K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

$\left ( a+b\sqrt{2} \right )^{1994}+\left ( c+d\sqrt{2} \right )^{1994}= 5+4\sqrt{2}$ - Đại số - Diễn đàn Toán học

1 tháng 8 2017

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)

\(6\sqrt{55}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{55}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in N\)

\(\Rightarrow a+b=6\)

Xét các TH:

a = 0 => b = 6

a = 1 => b = 5

a = 2 => b = 4

a = 3 => b = 3

a = 4 => b = 2

a = 5 => b = 1

a = 6 => b = 0

Từ đó dễ dàng tìm đc x, y

3 tháng 8 2017

Biên cưng. Minh Quân đây. 

1 tháng 8 2017

Mình làm hơi tắt nhé !

a, \(\left(5\sqrt{18}-3\sqrt{18}+4\sqrt{2}\right):\sqrt{2}\)

= \(5\sqrt{18:2}-3\sqrt{18:2}+4\sqrt{2:2}=15-9+4=10\)

b, \(\left(\sqrt{\dfrac{a^2}{d}}+\sqrt{\dfrac{b^2}{d}}-\sqrt{d}\right):\sqrt{d}\)

= \(\left(\sqrt{\dfrac{a^2}{d}}+\sqrt{\dfrac{b^2}{d}}-\sqrt{d}\right).\dfrac{1}{\sqrt{d}}=\dfrac{\sqrt{a^2}}{\sqrt{d}.\sqrt{d}}+\dfrac{\sqrt{b^2}}{\sqrt{d}.\sqrt{d}}-\dfrac{\sqrt{d}}{\sqrt{d}}=\dfrac{a}{d}+\dfrac{b}{d}-1\) = \(\dfrac{a+b}{d}-1\)

3)

Ta có : \(a^2+1=a^2+ab+bc+ca\)

\(=a.\left(a+b\right)+c.\left(a+b\right)\)

\(=\left(a+b\right)\left(a+c\right)\)

Tương tự ta có : \(b^2+1=\left(b+a\right)\left(b+c\right)\)

\(c^2+1=\left(c+a\right)\left(c+b\right)\)

Khi đó :

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\) là một số hữu tỉ với a,b,c hữu tỉ.

14 tháng 3 2020

Bài 1 :

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=\left|x-1\right|=1-x\)

\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=\left|y-1\right|=1-y\)

\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=\left|z-1\right|=1-z\)

\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}\)

Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)