Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử có ít nhất 2 trong 2015 số nguyên dương đã cho không có số nào bằng nhau
Không mất tính tổng quát, giả sử \(a_1< a_2< ...< a_{2015}\)
=> \(a_1\ge1;a_2\ge2;...;a_{2015}\ge2015\)
=>\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}\le1+\frac{1}{2}+...+\frac{1}{2015}\left(1\right)\)
Ta lại có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+\frac{2014}{2}=1008\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< 1008\), trái với giả thiết
Vậy có ít nhất 2 trong 2015 số nguyên dương đã cho bằng nhau
a)Ta xét x=0 =>f(0)=(0+2)2014=a1*02014+.....+a2015
=>22014=a2015
b) ta xét x=1 =>f(1)=(1+2)2014=a1*12014+a2*12013+.....+a2015
=>32014=a1+a2+........+a2015
mà a2015=a2014
=>a1+a2+.......+a2014=32014-22014
ta xét x=-1=>f(-1)=(-1+2)2014=a1*(-1)2014+a2(-1)2013+........+a2015
=>a1-a2+a3-a4+............-a2014+a2015=12014
=>a1-a2+............+a2015=1
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2015}}{a_{2016}}=\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\)
=> \(\left(\frac{a_1+a_2+....+a_{2015}}{a_2+a_3+....+a_{2016}}\right)^{2015}=\frac{a_1.a_2.....a_{2015}}{a_2.a_3......a_{2016}}=\frac{a_1}{a_{2016}}\)
=> \(\left(\frac{a_1+a_2+....+a_{2015}}{a_2+a_3+....+a_{2016}}\right)^{2015}=\frac{a_1}{a_{2016}}\)(Đpcm)
Ta nhóm các nhóm , mỗi nhóm 2 cặp số
=> ta có 1007 cặp và dư 1 một số là a2015.a1
=>(a1.a2+...+a2014.a2015)+a2015.a1=0
Để dãy trên bằng 0 => (a1.a2+...+a2014.a2015) có giá trị tương ứng là 1+(-1)+...+(-1)+1 mới có thể bằng 0
=> a2015.a1 phải bằng 0 thỏa mãn
mà mỗi số chỉ bằng 1 hoặc -1 ( theo đề bài )
=> ko tồn tại cặp số nào thỏa mãn