K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2024

Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
          =a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
           =b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.

 

19 tháng 7 2021

bạn xem link này nek, mik có trả lời cho 1 bn r đó (nhớ k cho mik nhe)

19 tháng 7 2021

https://olm.vn/hoi-dap/detail/51014866576.html

Do các số nguyên dương là phân biệt nên tổng 3 số bất kì bao giờ cũng lớn hơn 3

Xét số dư trong phép chia các số này cho 3. Nếu các số dư là 0;1;2 đều xuất hiện thì ta lấy 3 số tương ứng, ta sẽ được tổng 3 số chia hết cho 3

=>LOại

Nếu có 1 số dư nào đó không xuất hiện thì có 5 số và chỉ có nhiều nhất 2 số dư

=>Suy ra tồn tại 3 số có cùng số dư

=>Ba số này có tổng chia hết cho 3

=>ĐPCM

10 tháng 9 2017

 + Giả sử các số nguyên tố đều lớn hơn 2 ta có 
=> pi = 4n + 1 hoạc pi = 4n + 3 
=> pi^2 chia 4 dư 1 hay pi^2 = 1 (mod4) 
=> p1^2 + p2^2 + ... + p7^2 = 7 (mod4) 
mà 7 = 3(mod4) mặt khác p8^2 = 1 (mod 4) 
=> pt VN vậy phải có 1 pi nào đó = 2 giả sử là p1 
do 2^2 = 4 là số chẵn và p2^2 + ... + p7^2 là tổng bình phương 
của 6 số lẽ nên có tổng phải là số chẵn 
=> 2^2 + p2^2 + ... + p7^2 là số chẵn => p8 = 2 
=> p2^2 + ... + p7^2 = 0 hay p2 = p3 = .. = p7 = 0 
* Vậy pt VN

P/s: Anh/chị tham khảo ở đây nha

11 tháng 9 2017

chưa hiểu dòng số 5 giải thích giúp mình

9 tháng 10 2015

Gọi 5 số đó là a; b; c; d; e . ta có a+ b + c + d + e = 1

Không mất tính tổng quát, giả sử  0 < a < b < c < d < e 

Nhận xét: c + d < \(\frac{2}{3}\). Vì nếu c + d > \(\frac{2}{3}\)

ta có: 2e > c + d >  \(\frac{2}{3}\) => e  > \(\frac{1}{3}\) => e + c + d > \(\frac{1}{3}\) + \(\frac{2}{3}\) = 1 . Mâu thuẫn với a + b + c + d + e = 1; và a; b; c; d; e không âm

Áp dụng bđt Cô si ta có: cd < \(\frac{1}{4}\)(c + d)2 => c.d < \(\frac{1}{9}\)

Mặt khác, 1 = a + b + c + d + e a + 3b + e > 3b + e > 2.\(\sqrt{3be}\) => b.e < \(\left(\frac{1}{2\sqrt{3}}\right)^2=\frac{1}{12}\) < \(\frac{1}{9}\)

 +) ta có: a.e < b.e < \(\frac{1}{12}\) < \(\frac{1}{9}\); b.c < c.d < \(\frac{1}{9}\); d.a < d.c < \(\frac{1}{9}\)

=> có thể sắp xếp 5 số a; b; c;d; e theo thứ tự như sau: a; e; b; c ; d đều thỏa mãn tích 2 số bất kì cạnh nhau không vượt quá \(\frac{1}{9}\)