Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=5x^2+2y^2+4xy-2x+4y+2020\)
\(=4x^2+4xy+y^2+x^2-2x+1+4y^2+4y+1+2018\)
\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(2y+1\right)^2+2018\ge2018\left(\text{với mọi x;y}\right)\)
\(\text{Dấu "=" xảy ra khi: }x-1=0;2x+1=0\Leftrightarrow x=1;y=\frac{-1}{2}\)
\(\text{Vậy GTNN của }D\text{ là }2018\text{ tại }x=1;y=\frac{-1}{2}\)
=4.x^2+x^2+y^2+y^2+4xy-2x+4y+1+4+2015
=[4.x^2+4xy+y^2]+[x^2-2x+1]+[y^2-4y+4]
=[2x+y]^2+[x-1]^2+[y-2]^2+2015>hoặc bằng2015
giá trị nhỏ nhất là 2015
Đặt \(A=5x^2+2y^2+2xy-2x+4y+2015\)
\(\Rightarrow\) \(5A=25x^2+10y^2+10xy-10x+20y+10075\)
\(\Leftrightarrow\) \(5A=25x^2+10\left(y-1\right)x+\left(10y^2+20y+10075\right)\)
\(=\left(5x\right)^2+2.5x\left(y-1\right)+\left(y-1\right)^2+\left(9y^2+22y+10074\right)\)
\(=\left(5x+y-1\right)^2+9\left(y^2+\frac{22}{9}y+\frac{121}{81}\right)+\frac{90545}{9}\)
\(=\left(5x+y-1\right)^2+9\left(y+\frac{11}{9}\right)^2+\frac{90545}{9}\ge\frac{90545}{9}\) suy ra \(A\ge\frac{90545}{9}:5=\frac{18109}{9}\)
Vậy \(A_{min}=\frac{18109}{9}\) \(\Leftrightarrow\) \(\hept{\begin{cases}5x+y-1=0\\y+\frac{11}{9}=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{4}{9}\\y=\frac{-11}{9}\end{cases}}\)
Done!
K=(4x^2+4xy+y^2)+(x^2-2x+1)+(y^2+4y+4)+2016
=(2x+y)^2+(x-1)^2+(y+2)^2+2016 > =2016 với mọi x,y
minK=2016,dấu "=" xảy ra <=> x=1;y=-2
\(A=4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+2019\)
\(A=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2019\ge2019\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}2x+y=0\\x-1=0\\y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(P=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+x^2-4x+2019\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(x-2\right)^2+2014\)
\(=\left(x-2y+1\right)^2+\left(x-2\right)^2+2014\ge2014\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=2\\x=2y-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\frac{3}{2}\end{matrix}\right.\)
Vậy...
\(P=2x^2+4y^2-4xy-2x-4y+2019\)
\(P=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(x-2\right)^2+2014\) ( Bước này mình làm hơi tắt , cái này bạn chỉ cần chú ý để tách ra thôi )
\(P=\left(x-2y+1\right)^2+\left(x-2\right)^2+2014\ge2014\)
Dấu '' = '' xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+1=0\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-2y=0\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3}{2}\\x=2\end{matrix}\right.\)
Vậy Min \(P=2014\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3}{2}\\x=2\end{matrix}\right.\)
\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)
\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)
\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)
Đẳng thức xảy ra khi x =0
Tí làm tiếp
\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)
\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)
\(( y^2 + 4y + 4 ) + 2010\)
\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)
\(\ge\)\(2010\)
\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)
\(\Rightarrow\)\(x = 1 và y = - 2\)
\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)