K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

TK :
Bài 63 trang 50 SGK Toán 7 Tập 2 | Hay nhất Giải bài tập Toán lớp 7

13 tháng 2 2022

TK

undefined

13 tháng 2 2022

Ghi TK vào ạ 

Bai 1: Cho tam giac ABC vuong tai A. Tia phan giac cua goc B cat AC  o D. Ke DE vuong goc voi BC .CMR: AB bang BE

Bai 2:  Cho tam giac ABC, D la trung diem cua AB. Duong thang qua D va song2 voi BC cat AC o E, duong thang qua E va song2 voi AB cat BC o F.CMR: 

a, AD bang EF

b, \(\Delta ADE=\Delta EFC\)

c,\(AE=EC\)

Bai 3:* Cho tam giac ABC ,D la trung diem cua AB ,E la trung diem cua AC .Ve diem F : E la trung diem cua DF.CMR:

a,\(DB=CF\)

b,\(\Delta BDC=\Delta FCD\)

c,\(DE//BC,DE=\frac{1}{2}BC\)

HTDT

21 tháng 6 2017

Bài 6:

A P M N Q 33 o

a) \(\widehat{MAP}=\widehat{NAQ}\) (hai góc đối đỉnh)

\(\widehat{MAP}=33^o\)

Vậy \(\widehat{NAQ}=33^o\).

b) Ta có: \(\widehat{MAP}+\widehat{MAQ}=180^o\) (hai góc kề bù)

\(\widehat{MAP}=33^o\)

Nên \(\widehat{MAQ}=180^o-\widehat{MAP}=180^o-33^o=147^o\)

Vậy \(\widehat{MAQ}=147^o.\)

c) Các cặp góc đối đỉnh:

\(\widehat{MAP}\)\(\widehat{NAQ}\)

\(\widehat{NAP}\)\(\widehat{MAQ}\).

d) Các cặp góc bù nhau:

\(\widehat{MAP}\)\(\widehat{NAP}\)

\(\widehat{NAP}\)\(\widehat{NAQ}\)

\(\widehat{NAQ}\)\(\widehat{MAQ}\)

\(\widehat{MAQ}\)\(\widehat{MAP}\).

9 tháng 10 2018

Cách 1

Ta có a/b=c/d (1)

a+b/a-b= c+d/c-d

<=> (a+b) (c-d)=(a-b) (c+d)

<=> -ad+bc=ad-bc

<=> 2bc=2ad

<=> bc=ad <=> a/b=c/d (2)

Từ (1),(2) => a/b=c/d=a+b/a-b=c+d/c-d

Cách 2

a/b=c/d => a+b/b=c+d/d (1)

a/b=c/d => a-b/b=c-d/d (2)

Từ (1),(2) =>a+b/a-b=c+d/c-d

=>a/b=c/d=a+b/a-b=c+d/c-d

9 tháng 10 2018

Bài 63

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)             ( k \(\ne\)0)

 \(\Rightarrow\) a= b.k ; c= d.k

- Với a= b.k; c= d.k ta có

\(\frac{a+b}{a-b}=\frac{b.k+b}{b.k-b}=\frac{b.\left(k+1\right)}{b.\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{d.k+d}{d.k-d}=\frac{d.\left(k+1\right)}{d.\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

- Từ (1) và (2) \(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)( vì cùng = \(\frac{k+1}{k-1}\))

\(\Rightarrowđpcm\)

24 tháng 11 2019

Bài 63 trang 146 sách bài tập Toán 7 Tập 1: Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng:

a. AD = EF

b. ΔADE = Δ EFC

c. AE = EC

Lời giải:

a, Xét Δ DBFvà Δ FDE, ta có:

∠(BDF) =∠(DFE) (so le trong vì EF // AB)

DF cạnh chung

∠(DFB) =∠(FDE) (so le trong vì DE // BC)

Suy ra: Δ DBF=Δ FDE(g.c.g) ⇒ DB = EF (hai cạnh tương ứng)

Mà AD = DB (gt)

Vậy: AD = EF

Hok tốt !

24 tháng 11 2019

lên vietjack có hết bạn à

16 tháng 7 2017

a,

\(C=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{19}\\ C>0+0+0+...+0=0\left(1\right)\)

\(C=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{19}\)

Ta có:

\(\dfrac{1}{11}< \dfrac{1}{10}\\ \dfrac{1}{12}< \dfrac{1}{10}\\ \dfrac{1}{13}< \dfrac{1}{10}\\ ...\\ \dfrac{1}{19}< \dfrac{1}{10}\)

\(\Rightarrow C< \dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}\left(9\text{ phân số }\dfrac{1}{10}\right)\\ C< 9\cdot\dfrac{1}{10}\\ C< \dfrac{9}{10}< 1\left(2\right)\)

Từ (1) và (2) ta có:

\(0< C< 1\)

Rõ ràng \(0\)\(1\) là hai số nguyên liên tiếp nên \(C\) không phải là số nguyên

Vậy \(C\) không phải là số nguyên (đpcm)

b,

\(D=2\left[\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{n\left(n+2\right)}\right]\\ D=\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{n\left(n+2\right)}\\ D>0+0+0+...+0=0\left(1\right)\)

Ta có:

\(D=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{n\cdot\left(n+2\right)}\\ D=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{n}-\dfrac{1}{n+2}\\ D=\dfrac{1}{1}-\dfrac{1}{n+2}\\ D=1-\dfrac{1}{n+2}< 1\left(\text{Vì }n>0\right)\left(2\right)\)

Từ (1) và (2) ta có:

\(0< D< 1\)

Rõ ràng \(0\)\(1\) là hai số nguyên liên tiếp nên \(D\) không phải là số nguyên

Vậy \(D\) không phải là số nguyên (đpcm)

c,

\(E=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\\ E=\dfrac{2}{6}+\dfrac{2}{8}+\dfrac{2}{10}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\\ E=\dfrac{2}{6}+\dfrac{2}{7}+\dfrac{2}{8}+\dfrac{2}{9}+\dfrac{2}{10}+\dfrac{2}{11}\)

Ta có:

\(\dfrac{2}{6}>\dfrac{2}{12}\\ \dfrac{2}{7}>\dfrac{2}{12}\\ \dfrac{2}{8}>\dfrac{2}{12}\\ ...\\ \dfrac{2}{11}>\dfrac{2}{12}\)

\(\Rightarrow E>\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}\\ E>6\cdot\dfrac{2}{12}\\ E>\dfrac{12}{12}=1\left(1\right)\)

Mặt khác ta có:

\(\dfrac{2}{6}>\dfrac{2}{7}\\ \dfrac{2}{6}>\dfrac{2}{8}\\ \dfrac{2}{6}>\dfrac{2}{9}\\ ...\\ \dfrac{2}{6}>\dfrac{2}{11}\)

\(\Rightarrow E< \dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}\\ E< 6\cdot\dfrac{2}{6}\\ E< 2\left(2\right)\)

Từ (1) và (2) ta có:

\(1< E< 2\)

Rõ ràng \(1\)\(2\) là hai số nguyên liên tiếp nên \(E\) không phải là số nguyên

Vậy \(E\) không phải là số nguyên (đpcm)

16 tháng 7 2017

c) \(E=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\)

\(=\dfrac{2}{6}+\dfrac{2}{8}+\dfrac{2}{10}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\)

\(=2\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)\)

Ta có: \(\dfrac{1}{6}>\dfrac{1}{7}>\dfrac{1}{8}>\dfrac{1}{9}>\dfrac{1}{10}>\dfrac{1}{11}\)

\(\Rightarrow E>2\left(\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}\right)=2\left(\dfrac{1}{11}.6\right)=2\cdot\dfrac{6}{11}=\dfrac{12}{11}>1\) (1)

\(E< 2\left(\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}\right)=2\left(\dfrac{1}{6}.6\right)=2.1=2\) (2)

Từ (1) và (2) suy ra 1 < E < 2 suy ra E không phải là số nguyên

8 tháng 2 2019

a. 2/3 xy2z.(-3x2y)2

b. x2yz.(2xy)2z

Lời giải:

a. Ta có: 2/3 xy2z.(-3x2y)2 = - 2/3 xy2z.9x4y2

= (-2/3 .9)(x.x4).(y2.y2).z = -6x5y4z

b. Ta có: x2yz.(2xy)2z = x2yz.4x2y2.z = 4(x2.x2)(y.y2)(z.z) = 4x4y3z2

8 tháng 2 2019

a. 2/3 xy2z.(-3x2y)2

b. x2yz.(2xy)2z

Lời giải:

a. Ta có: 2/3 xy2z.(-3x2y)2 = - 2/3 xy2z.9x4y2

= (-2/3 .9)(x.x4).(y2.y2).z = -6x5y4z

b. Ta có: x2yz.(2xy)2z = x2yz.4x2y2.z = 4(x2.x2)(y.y2)(z.z) = 4x4y3z2

22 tháng 3 2016

co mk nè chi vx

22 tháng 3 2016

đăng lên đi

12 tháng 11 2017

Ban Hoa giải đúng. Hưng làm nhầm công thức