K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt f(x)=0

=>(x-1)(x-2)=0

=>x=1 hoặc x=2

THeo đề, ta có hệ:

g(1)=0 và g(2)=0

=>\(\left\{{}\begin{matrix}2-a+b+4=0\\16-4a+2b+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a+b=-6\\-4a+2b=-20\end{matrix}\right.\)

=>a=4; b=-2

=>\(g\left(x\right)=2x^3-4x^2-2x+4\)

g(-1)=2*(-1)^3-4*(-1)^2-2*(-1)+4

=-2-4+2+4

=4

14 tháng 4 2018

mik nghĩ 

bn có thể tham khảo ở link :

https://olm.vn/hoi-dap/question/902782.html 

~~ hok tốt ~ 

14 tháng 4 2018

là ren á bạn

12 tháng 5 2016

xét f(x)=0=> (x+1)(x-1)=0

   =>__x+1=0=>x=-1

      |__x-1=0=> x=1

vậy nghiêm của f(x) là ±1

12 tháng 5 2016

xét f(x)=0 => (x+1)(x-1)=0

=> __x+1=0=> x=-1

    |__x-1=0=> x=1

vậy nghiệm của f(x) là ±1

ta có: nghiệm của f(x) cũng là nghiệm của g(x) nên ±1 cũng là nghiêm của g(x)

g(-1)=\(\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)+2=-1+a-b+2=1+a-b=0\)

g(1)=\(1^3+a.1^2+b.1+2=1+a+b+2=3+a+b=0\)

=>1+a-b=3+a+b

=>1-3-b-b=-a+a

=> -2-2b=0

=> -2b=2

=>b=2:(-2)=-1

thay b vào ta có:

\(g\left(1\right)=3+a+\left(-1\right)=0\)

=> 2+a=0

=> a=-2

Vậy a=-2 và b=-1

6 tháng 5 2018

ahihi

15 tháng 5 2018

Ta có: f(x)=(x+1).(x-1)=0

=> x+1=0=>x= -1   (chuyển vế đổi dấu)

x-1=0=>x=1

g(x)=x^3+ax^2+bc+2

g(-1)=(-1)^3+a.(-1)^2+b.(-1)+2=0

<=> -1+a+b+2=0

=>a= -1-b

g(1)= 1^3+a.1^2+b.1+2=0

<=>1+a+b+2=0

=>3+a+b=0

=>b=-3

a=0 

Vậy a=0 ; b= -3

Đặt f(x)=0

=>x+1=0 hoặc x-2=0

=>x=-1 hoặc x=2

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}g\left(-1\right)=0\\g\left(2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1+a-b-6=0\\8+4a+2b-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=7\\4a+2b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-5\end{matrix}\right.\)

Vậy: \(g\left(x\right)=x^3+2x^2-5x-6\)

g(-3)=-27+18+15-6=0

=>x=-3 là nghiệm của g(x)

F(x)=0

=>x=-2 hoặc x=1

Để F(x) và G(x) có chung tập nghiệm thì:

-2+4a-2b+2=0 và 1+a+b+2=0

=>4a-2b=0 và a+b=-3

=>a=-1 và b=-2

Đặt f(x)=0

=>(x-1)(x+2)=0

=>x=1 hoặc x=-2

Vì nghiệm của f(x) cũng là nghiệm của g(x) nên g(1)=0 và g(-2)=0

\(\Leftrightarrow\left\{{}\begin{matrix}1+a\cdot1^2+b\cdot1+2=0\\\left(-2\right)^3+a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)