Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính tổng các dãy sau :
A = 1 + 2 + 22+…+ 2100
B = 3 – 32 + 33 – … – 3100
Bài giải:
A = 1 + 2 + 22 + …+ 2 100
Nhân a = 2 cho hai vế :
2A = 2 + 22 + 23 + …+ 2101
tính : 2A – A = (2 + 22 + 23 + …+ 2101 ) – (1 +2 + 22+ …+2100)
Vậy A = 2101 – 1
B = 3 – 32 + 33 – … – 3100
Nhân a = 3 cho hai vế : 3B = 32 – 33 + 34 – … – 3101
Tín : B + 3B = (3 – 33 + 33) – …- 3100) + ( 32 – 23 +34 – … – 3101)
4B = 3 – 3101
Vậy B = ( 3- 3101) : 4
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
\(S=\left(10-1\right)+\left(100-1\right)+\left(1000-1\right)+...+\left(100..00-1\right)\)
\(S=\left(10^1+10^2+10^3+...+10^n\right)-n\)
Đặt \(P=10^1+10^2+10^3+...+10^n\Rightarrow S=P-n\)
\(10P=10^2+10^3+...+10^{n+1}\)
\(10P-P=9P=\left(10^2+10^3+10^4+...+10^{n+1}\right)-\left(10^1+10^2+...+10^n\right)=10^{n+1}-10=10.\left(10^n-1\right)\)
\(P=\dfrac{10.\left(10^n-1\right)}{9}\Rightarrow S=\dfrac{10.\left(10^n-1\right)}{9}-n\)
Vô tình đi ngang qua :)
Xét lũy thừa \(99999^{99999}\) có:
\(\overline{...9}^{\overline{...9}}=\overline{.....9}\)
Xét tiếp lũy thừa \(\overline{.....9}^{999}\) có:
\(\overline{.....9}^{\overline{...9}}=\overline{......9}\)
Xét tương tự với 2 lũy thừa còn lại, ta được:
\(\overline{......9}^{99^9}=\overline{.......9}\\ \Leftrightarrow N=\overline{.......9}\)
Vậy số tự nhiên N có chữ số tận cùng là 9
Có gì sai mong mọi người chỉ bảo ạ :3
tận cùng bằng chữ số tự nhiên