K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

Theo T/C dãy tỉ số bằng nhau 

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\frac{a+b}{c}=2\Rightarrow a+b=2c\)

Tương tự ta có 

\(b+c=2a\)

\(c+a=2b\)

Xét \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)\)

\(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

19 tháng 3 2017

ta có:\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)do đó:

+)\(\dfrac{a+b-c}{c}=1\)

=> a+b-c=c

=> a+b=2c

=> a+b+c =3c (1)

cm tương tự ta đươc (bạn cần làm chi tiết hơn)

+)3a=a+b+c (2)

+) 3b=a+b+c(3)

từ (1);(2) và (3)=> 3a=3b=3c

=> a=b=c

=>B=\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{c}{c}\right)\left(1+\dfrac{b}{b}\right)=2.2.2=8\)

vậy ...

Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0

2 tháng 2 2018

2/ Ta có :

\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)

\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)

\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)

\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)

\(=1-1=0\)

10 tháng 2 2018

b) Tìm min

\(SV=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)

\(SV=\left|x-2016\right|+\left|2018-x\right|+\left|x-2017\right|\)

\(SV\ge\left|x-2016+2018-x\right|+\left|x-2017\right|=2+\left|x-2017\right|\ge2\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}2016\le x\le2018\\x=2017\end{matrix}\right.\Leftrightarrow x=2017\)

3) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=676\)

\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=676\)

\(\Rightarrow\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a}=673\)

10 tháng 2 2018

Mong mn giúp đỡ mikyeu

Cảm ơn mn

27 tháng 12 2017

\(P=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\\ \Rightarrow P+3=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{a+c}+1\right)+\left(\dfrac{c}{a+b}+1\right)\\ \Rightarrow P+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}\\ =\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)=2018.\dfrac{2021}{4034}=1011.000992\\ \Rightarrow P=1008.000992\)

27 tháng 12 2018

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=1\)

\(\Rightarrow\dfrac{a+b-c}{c}=1\Leftrightarrow a+b-c=c\Leftrightarrow a+b=2c\)

\(\Rightarrow\dfrac{b+c-a}{a}=1\Leftrightarrow b+c-a=a\Leftrightarrow b+c=2a\)

ta có

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{a+b}{a}\times\dfrac{c+a}{c}\times\dfrac{b+c}{b}=\dfrac{2c}{a}\times\dfrac{2b}{c}\times\dfrac{2a}{b}=8\)

\(\Rightarrow M=8\)

AH
Akai Haruma
Giáo viên
3 tháng 5 2018

Lời giải:
Ta có:

\(\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-a)(b-c)}+\frac{a-b}{(c-a)(c-b)}=2013\)

\(\Leftrightarrow \frac{-(b-c)^2}{(a-b)(b-c)(c-a)}+\frac{-(c-a)^2}{(a-b)(b-c)(c-a)}+\frac{-(a-b)^2}{(a-b)(b-c)(c-a)}=2013\)

\(\Leftrightarrow \frac{-[(a-b)^2+(b-c)^2+(c-a)^2]}{(a-b)(b-c)(c-a)}=2013\)

\(\Rightarrow \frac{2(a^2+b^2+c^2-ab-bc-ac)}{(a-b)(b-c)(c-a)}=-2013(*)\)

Lại có:

\(P=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=\frac{(b-c)(c-a)+(c-a)(a-b)+(a-b)(b-c)}{(a-b)(b-c)(c-a)}\)

\(=\frac{bc-ba-c^2+ca+ca-bc-a^2+ab+ab-ac-b^2+bc}{(a-b)(b-c)(c-a)}\)

\(=\frac{ab+bc+ac-(a^2+b^2+c^2)}{(a-b)(b-c)(c-a)}=-\frac{1}{2}.\frac{2(a^2+b^2+c^2-ab-bc-ac)}{(a-b)(b-c)(c-a)}\)

\(=\frac{-1}{2}.-2013=\frac{2013}{2}\) (theo $(*)$)