K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

đặt x^2 + x + 1 =a

ta có phương trình : a ( a+1)=12

\(\Leftrightarrow\)a^2 + a -12 =0

\(\Leftrightarrow\)(a +4)(a-3)  =0

\(\Leftrightarrow\)a=-4 hoặc a=3

Nếu a=-4 tương đương với x^2 +x +5 =0

tương đương: (x+1/2)^2                     =-19/4( vô nghiệm)

Nếu a=3 tương đương với x^2 +x -2 =0 

tương đương với ( x+2)(x-1)=0

tương đương với x=-2 ; x=1

Vậy S={ -2;1}

10 tháng 4 2018

\(x^2+y^2+z^2=x\left(y+z\right)\Rightarrow2x^2+2y^2+2z^2=2xy+2xz\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2xz=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+y^2+z^2=0\)

\(\Rightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2=0\)

Vì \(\left(x-y\right)^2\ge0\forall x,y\)

\(\left(x-z\right)^2\ge0\forall x,z\)

\(y^2\ge0\forall y\)

\(z^2\ge0\forall z\)

\(\Rightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2\ge0\forall x,y,z\)

Dấu = xảy ra <=>\(\hept{\begin{cases}x=y\\x=z\\y=0;z=0\end{cases}}\)

=> x=y=z=0 là nghiệm của pt

28 tháng 4 2019

Em mới lớp 7 thôi nên không chắc

Nhân 2 vào hai vế:

\(PT\Leftrightarrow2x^2+2y^2+2z^2=2xy+2xz\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2=0\)

Đến đây dễ rồi.

18 tháng 2 2016

bài đó có dạng

ax4+bx3+cx2+dx+e=0 (Với b=d hoặc b=-d)

Cách làm có nhìu cách tui chỉ rành một cách nên tui chỉ

Với b=d thì đặt t=x2+1

Với b=-d thì đặt t=x2-1

tự nguyên cứu tiếp đi

18 tháng 2 2016

ta xét thấy đây là phương trình đối xứng vì hệ số của các số hạng cách đều số hạng đầu và số hạng cuối bằng nhau (ví dụ 3x4 và 3 có cùng hệ số là 3, -13x3 và -13x có cùng hệ số là -13....)

cụ thể đây là phương trình đối xứng bậc chẵn (số hạng đàu có bậc chẵn là 4)

giải như sau

ta nhẩm thấy 0 không phải là nghiệm của phương trình nên chia cả hai vế cho x2 ta có

      3x2-13x+16-13/x + 3/x=0

<=>(3x^2 + 3/x^2) - (13x + 13/x) +16 =0

<=>3(x^2 + 1/x^2) - 13(x+1/x)=0

đặt x+1/x = a thì x^2+1/x^2=a^2 - 2 (cái này bạn dùng hằng đẳng thức (a+b)^2 để suy ra  nhé)

thay vào ta được

3a - 13(a^2 - 2) +16 = 0

3a - 13a^2 + 26 =0 

đến đây bạn giải a bằng cách đưa về phương trình tích rồi tìm x là xong

25 tháng 8 2016

a)Ta có: 132=(12+1)2

                 =122+2.12.1+1

                 =122+25

=>x=25

b)

Ta có: 132=(12+1)2

                 =122+2.12.1+1

                 =122+25

                 =122-(-25)

=>x=-25

14 tháng 4 2020

a, x3-3x2+3x-1=0                                                   b, (2x-5)2-(x+2)2=0                                    c, x2-x=3x-3

<=>x3-x2-2x2+2x+x-1=0                                         <=>(2x-5-x-2)(2x-5+x+2)=0                       <=>x2-x-3x+3=0

<=>(x3-x2)-(2x2-2x)+(x-1)=0                                   <=>(x-7)(3x-3)=0                                       <=>x2-4x+3=0

<=>x2(x-1)-2x(x-1)+(x-1)=0                                    <=>x-7=0 hoặc 3x-3=0                               <=>x2-x-3x+3=0

<=>(x-1)(x2-2x+1)=0                                              1, x-7=0                 2, 3x-3=0                       <=>(x2-x)-(3x-3)=0

<=>(x-1)(x-1)2=0                                                      <=>x=7                <=>x=1                          <=>x(x-1)-3(x-1)=0

<=>x-1=0                                                                Vậy TN của PT là S={7;1}                           <=>(x-1)(x-3)=0

<=>x=1                                                                                                                                       <=>x-1=0 hoặc x-3=0

Vậy tập nghiệm của phương trình là S={1}                                                                                1, x-1=0                      2, x-3=0

                                                                                                                                                     <=>x=1                       <=>x=3

                                                                                                                                                     Vậy TN của PT là S={1;3}

17 tháng 3 2020

đặt \(t=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

phương trình đã cho trở thành : \(t^2+t-12=0\)

phương trình này có nghiệm dương t=3. từ đó suy ra 2 nghiệm đã cho là x=1 , x=2

17 tháng 3 2020

(x2 + x + 1)2 + (x2 + x + 1) - 12 = 0

Đặt x2 + x + 1 = t

<=> t2 + t - 12 = 0

<=> t2 + 4t - 3t - 12 = 0

<=> (t + 4)(t - 3) = 0

<=> (x2 + x + 1 + 4)(x2 + x + 1 - 3) = 0

<=> [(x2 + x + 1/4) + 19/4](x2 + 2x - x - 2) = 0

<=> [(x2 + 1/2)2 + 19/4](x + 2)(x - 1) = 0

<=> (x + 2)(x - 1) = 0

<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy S = {-2; 1}