K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{19.21}\)

\(=2\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{19.21}\right)\)

\(=2\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\)

\(=2\left(1-\dfrac{1}{21}\right)=2.\dfrac{20}{21}=\dfrac{40}{21}\)

15 tháng 11 2017

\(A=\dfrac{1}{2}+\dfrac{3-2}{3.2}+\dfrac{4-3}{3.4}+...+\dfrac{100-99}{100.99}\)

\(A=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=1-\dfrac{1}{100}\)

\(A=\dfrac{99}{100}\)

15 tháng 11 2017

\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+....+\dfrac{2}{2007.2009}+\dfrac{2}{2009..2011}\)

\(2B=\dfrac{3-1}{1.3}+\dfrac{5-3}{3,5}+...+\dfrac{2009-2007}{2009.2007}+\dfrac{2011-2009}{2011.2009}\)

\(2B=\dfrac{3}{3}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2011}\)

\(2B=1-\dfrac{1}{2011}\)

\(2B=\dfrac{2010}{2011}\)

\(B=\dfrac{2010}{4022}\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

Lời giải:

\(M=\left ( \frac{1}{4}+\frac{3}{4^3}+...+\frac{2015}{4^{2015}} \right )-\left ( \frac{2}{4^2}+\frac{4}{4^4}+...+\frac{2016}{4^{2016}} \right )=A-B\)

Xét \(A= \frac{1}{4}+\frac{3}{4^3}+...+\frac{2015}{4^{2015}} \Rightarrow 16A=4+\frac{3}{4}+\frac{5}{4^3}+...+\frac{2015}{4^{2013}}\)

\(\Rightarrow 15A=4+2\underbrace{\left ( \frac{1}{4}+\frac{1}{4^3}+...+\frac{1}{4^{2013}} \right )}_{T}-\frac{2015}{4^{2015}}\)

Lại có \(16T=4+\frac{1}{4}+\frac{1}{4^3}+...+\frac{1}{4^{2011}}\Rightarrow 15T=4-\frac{1}{4^{2013}}\)

Do đó \(A=\frac{1}{15}\left ( 4+\frac{8}{15}-\frac{2}{15.4^{2013}}-\frac{2015}{4^{2015}} \right )\)

Thực hiện tương tự, suy ra

\(B=\frac{1}{15}\left ( 2+\frac{2}{15}-\frac{2}{15.4^{2014}}-\frac{2016}{4^{2016}} \right )\)

\(\Rightarrow M=A-B=\frac{1}{15}\left ( \frac{12}{5}-\frac{90692}{15.4^{2014}} \right )<\frac{1}{15}.\frac{12}{5}=\frac{4}{25}\)

Ta có đpcm

16 tháng 8 2017

-\(\dfrac{1}{4}\)- -5+\(\dfrac{1}{3}\)-\(\dfrac{3}{2}\)-3-\(\dfrac{7}{4}\)+\(\dfrac{4}{3}\)

=-\(\dfrac{1}{4}\)+5+\(\dfrac{1}{3}\)-\(\dfrac{3}{2}\)-3-\(\dfrac{7}{4}\)+\(\dfrac{4}{3}\)

=-(\(\dfrac{1}{4}\)+\(\dfrac{7}{4}\))+(5-3)+(\(\dfrac{1}{3}\)+\(\dfrac{4}{3}\))-\(\dfrac{3}{2}\)

=-2+2+\(\dfrac{5}{3}\)-\(\dfrac{3}{2}\)

=\(\dfrac{1}{6}\)

10 tháng 5 2017

a)\(sin^4\dfrac{\pi}{16}+sin^4\dfrac{3\pi}{16}+sin^4\dfrac{5\pi}{16}+sin^4\dfrac{7\pi}{16}\)
\(=\left(sin^4\dfrac{\pi}{16}+sin^4\dfrac{7\pi}{16}\right)+\left(sin^4\dfrac{3\pi}{16}+sin^4\dfrac{5\pi}{16}\right)\)
\(=\left(sin^4\dfrac{\pi}{16}+cos^4\dfrac{\pi}{16}\right)+\left(sin^4\dfrac{3\pi}{16}+cos^4\dfrac{3\pi}{16}\right)\)
\(=1-2sin^2\dfrac{\pi}{16}cos^2\dfrac{\pi}{16}+1-2sin^2\dfrac{3\pi}{16}cos^2\dfrac{3\pi}{16}\)
\(=2-\dfrac{1}{2}sin^2\dfrac{\pi}{8}-\dfrac{1}{2}sin^2\dfrac{3\pi}{8}\)
\(=2-\dfrac{1}{2}\left(sin^2\dfrac{\pi}{8}+sin^2\dfrac{3\pi}{8}\right)\)
\(=2-\dfrac{1}{2}\left(sin^2\dfrac{\pi}{8}+cos^2\dfrac{\pi}{8}\right)\)
\(=2-\dfrac{1}{2}=\dfrac{3}{2}\).

10 tháng 5 2017

Có: \(cotx-tanx=\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=\dfrac{cos^2x-sin^2x}{sinxcosx}=\dfrac{2cos2x}{sin2x}\)
Vì vậy:
\(cot7,5^o+tan67,5^o-tan7,5^o-cot67,5^o\)
\(=\left(cot7,5^o-tan7,5^o\right)-\left(cot67,5^o-tan67,5^o\right)\)
\(=\dfrac{2cos15^o}{sin15^o}-\dfrac{2cos135^o}{sin135^o}\)
\(=2\left(\dfrac{cos15^osin135^o-sin15^ocos135^o}{sin15^osin135^o}\right)\)
\(=2.\dfrac{sin120^o}{\dfrac{1}{2}\left(cos120^o-cos150^o\right)}\)
\(=\dfrac{4.\dfrac{\sqrt{3}}{2}}{\dfrac{-1}{2}+\dfrac{\sqrt{3}}{2}}=\dfrac{4\sqrt{3}}{\sqrt{3}-1}\)

7 tháng 11 2017

a) \(\dfrac{5+x}{4-x}=\dfrac{1}{2}\)

\(\Leftrightarrow2\left(5+x\right)=4-x\)

\(\Leftrightarrow2\left(5+x\right)-\left(4-x\right)=0\)

\(\Leftrightarrow10+2x-4+x=0\)

\(\Leftrightarrow6+3x=0\)

\(\Leftrightarrow3x=-6\)

\(\Leftrightarrow x=-2\)

Vậy x=-2

b) \(\dfrac{25}{14}=\dfrac{x+7}{x-4}\)

\(\Leftrightarrow25\left(x-4\right)=14\left(x+7\right)\)

\(\Leftrightarrow25\left(x-4\right)-14\left(x+7\right)=0\)

\(\Leftrightarrow25x-100-14x-98=0\)

\(\Leftrightarrow11x-198=0\)

\(\Leftrightarrow11x=198\)

\(\Leftrightarrow x=18\)

Vậy x=18

c) \(\dfrac{3x-5}{x+4}=\dfrac{5}{2}\)

\(\Leftrightarrow2\left(3x-5\right)=5\left(x+4\right)\)

\(\Leftrightarrow2\left(3x-5\right)-5\left(x+4\right)=0\)

\(\Leftrightarrow6x-10-5x-20=0\)

\(\Leftrightarrow x-30=0\)

\(\Leftrightarrow x=30\)

Vậy x=30

d) \(\dfrac{3x-1}{2x+1}=\dfrac{3}{7}\)

\(\Leftrightarrow7\left(3x-1\right)=3\left(2x+1\right)\)

\(\Leftrightarrow7\left(3x-1\right)-3\left(2x+1\right)=0\)

\(\Leftrightarrow21x-7-6x-3=0\)

\(\Leftrightarrow15x-10=0\)

\(\Leftrightarrow15x=10\)

\(\Leftrightarrow x=\dfrac{10}{15}=\dfrac{2}{3}\)

Vậy \(x=\dfrac{2}{3}\)

8 tháng 5 2017

\(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\)

\(\Rightarrow A=\dfrac{1}{1-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\) ( Lượt \(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\) ở tử và mẫu )

\(\Rightarrow A=\dfrac{1}{1-\dfrac{1}{24}}\)

\(\Rightarrow A=\dfrac{1}{\dfrac{23}{24}}=\dfrac{24}{23}\)

Vậy \(A=\dfrac{24}{23}\)

Bài 2: 

a: \(A=11+\dfrac{3}{13}-2-\dfrac{4}{7}-5-\dfrac{3}{13}\)

\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)

b: \(B=6+\dfrac{4}{9}+3+\dfrac{7}{11}-4-\dfrac{4}{9}\)

\(=5+\dfrac{7}{11}=\dfrac{62}{11}\)

c: \(C=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1+\dfrac{5}{7}=1\)

d: \(D=\dfrac{7}{10}\cdot\dfrac{8}{3}\cdot20\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}\)

\(=\dfrac{20}{10}\cdot7\cdot\dfrac{8}{3}\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}=2\cdot\dfrac{5}{4}=\dfrac{5}{2}\)

a: \(=\left(\dfrac{-48}{12}+\dfrac{-8}{12}+\dfrac{21}{12}\right)\cdot\dfrac{-12}{13}\)

\(=\dfrac{-35}{12}\cdot\dfrac{-12}{13}=\dfrac{35}{13}\)

b: \(=\dfrac{-3}{6}+\dfrac{5}{6}-\dfrac{312}{100}+\dfrac{51}{10}\)

\(=\dfrac{1}{3}-\dfrac{312}{100}+\dfrac{51}{10}=\dfrac{347}{150}\)

c: \(=\left(\dfrac{48}{300}+\dfrac{175}{300}-\dfrac{135}{100}\right)\cdot\dfrac{5}{2}+\dfrac{1}{4}\)

\(=\dfrac{88}{300}\cdot\dfrac{5}{2}+\dfrac{1}{4}=\dfrac{59}{60}\)