Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{2}}{2}cos^252+\frac{\sqrt{2}}{2}sin^252=\frac{\sqrt{2}}{2}\left(sin^252+cos^252\right)=\frac{\sqrt{2}}{2}\)
\(B=\sqrt{3}.cos^247+\sqrt{3}.sin^247=\sqrt{3}\left(sin^247+cos^247\right)=\sqrt{3}\)
\(ADCT:\sin^2\alpha+\cos^2\alpha=1\)
\(A=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin45^0\)
\(A=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\frac{\sqrt{2}}{2}\)
\(A=1+1+1+\frac{\sqrt{2}}{2}=\frac{6+\sqrt{2}}{2}\)
Câu b lm tương tự
\(=\left(1-sin^247^0\right)\cdot sin45^0+sin47^0\cdot\left(1-sin^245^0\right)\)
\(=sin45-sin^247^0\cdot\dfrac{\sqrt{2}}{2}+sin47^0-\dfrac{1}{2}\cdot sin47^0\)
\(\simeq0.69\)
Ta có \(\sin x=\cos\left(90^0-x\right)\)
\(\Rightarrow M=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin^245^0\)
\(=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\sin^245^0\)
\(=1+1+1+\left(\frac{\sqrt{2}}{2}\right)^2=3+\frac{1}{2}=\frac{7}{2}\)
\(B=\sin^247^o\times\cos45^o+\sin45^o\times\cos^247^o\)
\(B=\sin^247^o\times\cos45^o+\cos45^o\times\cos^247^o\)
\(B=\cos45^o\left(\sin^247^o+\cos^247^o\right)\)
\(B=\cos45^o.1=\cos45^o\)
\(gi\text{ỏi}-qu\text{á}-nh\text{ỉ}\)