Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2016\times2018+2}{2016\times2017+2018}=\frac{2016\times\left(2017+1\right)+2}{2016\times2017+2018}=\)\(=\frac{2016\times2017+2016+2}{2016\times2017+2018}=\frac{2016\times2017+2018}{2016\times2017+2018}=1\)
bài 1
Ta có : 2016/2017<1
2017/2018<1
Nên 2016/2017=2017/2018
Bài 1 :
a) Ta có : \(\frac{2016}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=1-\frac{1}{2018}\)
Vì \(-\frac{1}{2017}< -\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\)
b) Ta có : \(\frac{2018}{2017}=1+\frac{1}{2017}\)
\(\frac{2017}{2016}=1+\frac{1}{2016}\)
Vì \(\frac{1}{2017}< \frac{1}{2016}\) nên \(\frac{2018}{2017}< \frac{2017}{2016}\)
Câu 2 :
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{101.103}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{101.103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\frac{102}{103}=\frac{51}{103}\)
\(\frac{2016}{2017}< \frac{2017}{2018}\)
Đúng 100%
Đúng 100%
Đúng 100%
Ta có:
\(\frac{2017.2019}{2018.2018}\)
\(=\frac{2017.\left(2018+1\right)}{\left(2017+1\right).2018}\)
\(=\frac{2017.2018+2017}{2017.2018+2018}\)
Vì \(2017.2018+2017< 2017.2018+2018\)( tử nhỏ hơn mẫu )
\(\Rightarrow\frac{2017.2018+2017}{2017.2018+2018}< 1\)
Vậy \(\frac{2017.2019}{2018.2018}< 1\)
( Mk nghĩ vậy )
~~~~~~~Hok tốt~~~~~~~
\(\frac{2017.2019}{2018.2018}=\frac{2017.\left(2018+1\right)}{2018.\left(2017+1\right)}=\frac{2017.2018+2017}{2018.2017+2018}\)
\(2017< 2018\Rightarrow2017.2018+2017< 2018.2017+2018\Rightarrow\frac{2017.2018+2017}{2018.2017+2018}< 1\Rightarrow\frac{2017.2019}{2018.2018}< 1\)
1 \(A=\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times.........\times\left(1+\frac{1}{2016}\right)\times\left(1+\frac{1}{2017}\right)\)
\(A=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times......\times\frac{2016}{2017}\times\frac{2018}{2017}\)
\(A=\frac{2018}{2}=1009\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.......+\frac{2}{43.45}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......+\frac{1}{43}-\frac{1}{45}\)
\(B=\frac{1}{3}-\frac{1}{45}\)
\(B=\frac{14}{45}\)
2 \(\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{2018}\times\frac{2017}{47}\)
\(=\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{47}\times\frac{2017}{2018}\)
\(=\frac{2017}{2018}\times\left(\frac{23}{47}+\frac{24}{47}\right)\)
\(=\frac{2017}{2018}\times1\)
=\(\frac{2017}{2018}\)
bạn nào xem giải thế có đúng ko
a) So sánh \(\frac{2017}{2018}\)với \(\frac{2017}{2019}\)ta thấy \(\frac{2017}{2018}\) lớn hơn\(\frac{2017}{2019}\)(vì có chung tử nên số nào có mẫu lớn hơn thì nhỏ hơn và ngược lại
Tương tự so sánh \(\frac{2017}{2019}\)với\(\frac{2018}{2019}\)ta thấy \(\frac{2017}{2019}\)nhỏ hơn\(\frac{2018}{2019}\)
\(\Rightarrow\frac{2017}{2018}>\frac{2017}{2019}>\frac{2018}{2019}\)hay \(\frac{2017}{2018}\)>\(\frac{2018}{2019}\)
\(2018\times\left(\frac{1}{2}+\frac{1212}{2424}\right)=2018\times\left(\frac{1}{2}+\frac{12}{24}\right).\)
\(=2018\times\left(\frac{1}{2}+\frac{1}{2}\right)\)
\(=2018\times1=2018\)
\(a.\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=\frac{1}{2}-\frac{1}{5}\)
\(=\frac{3}{10}\)
\(b.\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}\)
\(=2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{5}\right)\)
\(=2\cdot\frac{3}{10}=\frac{3}{5}\)
\(c.\frac{1}{2\cdot3}+\frac{2}{3\cdot5}+\frac{3}{5\cdot8}\)
\(=\frac{1}{6}+\frac{2}{15}+\frac{3}{40}\)
\(=\frac{3}{8}\)
k nha 500 AE
a, \(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=\frac{1}{2}-\frac{1}{5}\)
\(=\frac{3}{10}\)
b, \(\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}\)
\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\times\frac{2}{1}\)
\(=\left(\frac{1}{2}-\frac{1}{5}\right)\times\frac{2}{1}\)
\(=\frac{3}{10}\times\frac{2}{1}\)
\(=\frac{3}{5}\)
c, \(\frac{1}{2\times3}+\frac{2}{3\times5}+\frac{3}{5\times8}\)
\(=\frac{3-2}{2\times3}+\frac{5-3}{3\times5}+\frac{8-5}{5\times8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{3}{8}\)
\(\frac{2018\cdot2016-1210}{2017\cdot2016+806}=\frac{2017\cdot2016+2016-1210}{2017\cdot2016+806}=\frac{2017\cdot2016+806}{2017\cdot2016+806}=1\)
= ( 2017 + 1) . 2016 - 1210 / 2017 . 2016 + 806
= 2016 .2017 + 2016 - 1210 / 2017 . 2016 + 806
= 2016 . 2017 + 806 / 2017 . 2016 + 806
= 1