Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)
\(\Rightarrow A=(1-\frac{1}{2017})+(1-\frac{1}{2018})+(1-\frac{1}{2019})\)
\(\Rightarrow A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
\(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)<\(\frac{3}{2017}\)<\(1\)
\(\Rightarrow A\)>\(3-1=2\)
\(B=\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow B=1-\frac{3}{6054}\)
\(\Rightarrow B=1-\frac{1}{2018}\)
\(B\)<\(1\);\(A\)>\(2\)
\(\Rightarrow A\)>\(B\)
ta có B= 1/2018+2/2017+3/2016+...+2017/2+2018/1
=> B=1+1+1+..+1( 2018 số hạng 1)+ 1/2018+..+2017/2
=> B= (1+1/2018)+(1+2/2017)+(1+3/2016)+...+(1+2017/2)+ 2019/2019
=> B= 2019 *(1/2+1/3+...+1/2019)
=> A/B= (1/2+1/3+...+1/2019)/2019*(1/2+1/3+..+1/2019)
=> A/B= 1/2019
Ta có : \(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-2019.2-\frac{2019}{2017}+2019.2\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)
\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)
\(=\frac{2018}{2017}-2018.\frac{2019}{1009}-\frac{2019}{2017}+2019.2\)
\(=\frac{2018}{2017}-2.2019-\frac{2019}{2017}+2.2019\)
\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)
\(\frac{1}{2018}-\frac{1}{2019}-\frac{2017}{2018}\)
= \(\left(\frac{1}{2018}-\frac{2017}{2018}\right)-\frac{1}{2019}\)
=\(-\frac{1008}{1009}-\frac{1}{2019}\)
=\(-\frac{2036161}{2073171}\)