\(A=\frac{5}{1.4}+\frac{29}{4.7}+\frac{71}{7.10}+...+\frac{10301}{100.103}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}\)

\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{103}\right)\)

\(=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

6 tháng 4 2017

\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

21 tháng 6 2017

Võ Thiện Tuấn viết tổng quát kết quả hay phép đề bài hả bạn ?

21 tháng 6 2017

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7} +....+\frac{1}{100}-\frac{1}{103}\)

\(=1-\frac{1}{103}\)

\(=\frac{102}{103}\)

3 tháng 5 2019

\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(B=\frac{1}{3}.\frac{102}{103}\)

\(B=\frac{34}{103}\)

3 tháng 5 2019

Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)

\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

\(=\frac{1}{3}.\frac{102}{103}\)

\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)

NV
19 tháng 6 2019

\(A=\frac{2}{4.9}+\frac{2}{9.14}+\frac{2}{14.19}+...+\frac{2}{504.509}\)

\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{504}-\frac{1}{509}\right)\)

\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{509}\right)=...\)

\(B=\frac{1.4+1}{1.4}+\frac{4.7+1}{4.7}+\frac{7.10+1}{7.10}+...+\frac{100.103+1}{100.103}\)

\(B=1+\frac{1}{1.4}+1+\frac{1}{4.7}+...+1+\frac{1}{100.103}\)

\(B=34+\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=34+\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=34+\frac{1}{3}\left(1-\frac{1}{103}\right)=...\)

22 tháng 4 2015

s=(1-1/4+1/4-1/7+1/7-1/10+...+1/100-1/103)+(1/103-1/104+1/104-1/105+1/105-1/106+1/106-1/107)

  =(1-1/103)+(1/103-1/107)

  =1           -         1/107

  =106/107

 

27 tháng 4 2017

=\(\frac{5}{3}\cdot\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{100\cdot103}\right)\)

=\(\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

=\(\frac{5}{3}\cdot\left(1-\frac{1}{103}\right)\)

=\(\frac{5}{3}\cdot\frac{102}{103}\)=\(\frac{170}{103}\)

Vậy D=\(\frac{170}{103}\)

22 tháng 4 2017

\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(3B=5\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{100.103}\right)\)

\(3B=5\left(1-\frac{1}{103}\right)\)

\(3B=5.\frac{102}{103}\)

\(3B=\frac{510}{103}\)

\(\Rightarrow B=\frac{170}{103}\)

Ta có:

B=\(\frac{5}{1.4}\)+\(\frac{5}{4.7}+.....+\frac{5}{100.103}\)

B=\(\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{100.103}\right)\)

B=\(\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\right)\)

B=\(\frac{5}{3}\left(1-\frac{1}{103}\right)\)

B=\(\frac{5}{3}.\frac{102}{103}\)

B=\(\frac{170}{103}\)

Vậy B=\(\frac{170}{103}\)

nhớ k

4 tháng 7 2015

a)\(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}=\frac{5}{3}\cdot\left(\frac{3}{1.4}+\frac{4}{4.7}+...+\frac{3}{100.103}\right)\)

\(=\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}\cdot\left(1-\frac{1}{103}\right)=\frac{5}{3}\cdot\frac{102}{103}=\frac{170}{103}\)b)\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}\cdot\frac{16}{51}=\frac{8}{51}\)

5 tháng 5 2017

Câu a) bạn Ác Mộng làm rồi nên mình làm b) nha

b)Gọi A = \(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(2A=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\right)\)

\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(2A=\frac{1}{3}-\frac{1}{51}\)

\(2A=\frac{16}{51}\)

\(A=\frac{16}{51}:2\)

\(A=\frac{8}{51}\)

1 tháng 5 2016

=5/3.(1/1-1/4+1/4-1/7+...+1/100-1/103)

=5/3.(1/1-1/103)

=5/3.102/103

=170/103

29 tháng 5 2016

=5/3.(1/1-1/4+1/4-1/7+...+1/100-1/103)

=5/3.(1/1-1/103)

=5/3.102/103

=170/103