K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

\(\left(9x-1\right)^2-2\left(9x-1\right)\left(5x-1\right)+\left(5x-1\right)^2=\left(9x-1-5x+1\right)^2=\left(14x\right)^2=196x^2\)

16 tháng 8 2016

\(5^4.3^4-\left(15^4-1\right)=15^4-15^4+1=1\)

Bạn ghi lại đề đi bạn

21 tháng 8 2018

bài 1:

a)\(A=x^3+y^3+xy=1^3+\left(-1\right)^3+1.\left(-1\right)=1-1-1=-1\)

b)\(B=\sqrt{x^2+y^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=\left|10\right|=10\)

c)\(C=10x+10y+15=10\left(x+y\right)+15=10.1+15=25\)

d)\(D=x^2y+y^2x+5=xy\left(x+y\right)+5=xy.0+5=5\)

e)\(E=4x+7x^2y^2+3y^4+5y^2=?????\)

Bài 2:

bạn chỉ cần tìm nhân tử chung r gộp lại dưới dạng tích

VD: 10x+5xy=5x(2+y)

2 tháng 9 2016

\(\left(x-1\right)-\left(x-2\right)\left(x+2\right)\) 

\(=\left(x-1\right)-\left(x^2-2^2\right)\) 

\(=\left(x-1\right)-x^2+2^2\)

\(=x-1-x^2+2^2\) 

\(=x-x^2+\left(2-1\right)\left(2+1\right)\) 

\(=x-x^2+3\)

2 tháng 9 2016

 a/ (x-1)2-(x-2)(x+2)

=(x-1)-(x2-22)

=(x-1)-x2-22

=x-x2 +(2-1)(2+1)

=x-x2+3

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

24 tháng 10 2020

\(x^3+\frac{1}{x^3}=x^3+\left(\frac{1}{x}\right)^3=\left(x+\frac{1}{x}\right)\left(x^2-x+\frac{1}{x^2}\right)\)( x khác 0 )

\(-x^3+9x^2-27x+27=-\left(x^3-9x^2+27x-27\right)=-\left(x-3\right)^3\)

\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)

22 tháng 10 2020

B1:

\(=x^2+2x-5x-10+3\left(x^2-2^2\right)-\left(9x^2-2.3x.\frac{1}{2}+\frac{1}{4}\right)+5x^2\)

\(=-10-12-\frac{1}{4}=-22\frac{1}{4}\)

22 tháng 10 2020

Bài 1.

( x - 5 )( x + 2 ) + 3( x - 2 )( x + 2 ) - ( 3x - 1/2 )2 + 5x2

= x2 - 3x - 10 + 3( x2 - 4 ) - ( 9x2 - 3x + 1/4 ) + 5x2

= 6x2 -- 3x - 10 + 3x2 - 12 - 9x2 + 3x - 1/4

= -89/4 không phụ thuộc vào biến

=> đpcm

Bài 2 < mình viết luôn nhé >

a) ( x + 2y2 )2 = x2 + 4xy2 + 4y4

b) ( a - 5/2b )2 = a2 - 5ab + 25/4b2

c) ( m + 1/2 )2 = m2 + m + 1/4

d) x2 - 16y4 = ( x + 4y2 )( x - 4y2 )

e) 25a2 - 1/4b2 = ( 5a + 1/2b )( 5a - 1/2b )