Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
\(B=\frac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}}{4}\)
\(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}}{4}\)
\(=\frac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}}{4}\)
\(=\frac{\left(3^8-1\right)\left(3^8+1\right)-3^{16}}{4}\)
\(=\frac{3^{16}-1-3^{16}}{4}=\frac{-1}{4}\)
2/
a, (x-5)2-(x+3)2=1
<=>(x-5+x+3)(x-5-x-3)=1
<=>-16.(x-1)=1
<=>x-1=-1/16
<=>x=15/16
b, (2x-1)2-(2x-3)2=4
<=>(2x-1+2x-3)(2x-1-2x+3)=4
<=>-8(x-1)=4
<=>x-1=-1/2
<=>x=1/2
1a) -3x2(2x3 - 2x + 1/3) = -6x5 + 6x3 - x2
b) (x4 + 2x3 - 2/3).(-3x4) = -3x8 - 6x7 + 2x4
c) (x + 3)(x - 4) = x2 - 4x + 3x - 12 = x2 - x - 12
d)(x - 4)(x2 + 4x + 16) = (x - 4)(x2 + 4x + 42) = x3 - 64
e) 4(x - 1/2)(x + 1/2)(4x2 + 1) =4(x2 - 1/4)(4x2 + 1) = 4(4x4 + x2 - x2 - 1/4) = 4(4x4 - 1/4) = 16x4 - 1
B2. a) (2 - x)(x2 + 2x + 4) + x(x - 3)(x + 4) - x2 + 24 = 0
=> 8 - x3 + x(x2 + 4x - 3x - 12) - x2 + 24 = 0
=> 8 - x3 + x3 + x2 - 12x - x2 + 24 = 0
=> -12x + 32 = 0
=> -12x = -32
=> x = -32 : (-12) = 8/3
b) (x/2 + 3)(5 - 6x) + (12x - 2)(x/4 + 3) = 0
=> 5x/2 - 3x2 + 15 - 18x + 3x2 + 36x - x/2 - 6 = 0
=> 20x + 9 = 0
=> 20x = -9
=> x = -9/20
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 - 22 = 0
<=> ( x - 3 - 2 )( x - 3 + 2 ) = 0
<=> ( x - 5 )( x - 1 ) = 0
<=> x = 5 hoặc x = 1
b( 2x + 3 )2 - ( 2x + 1 )( 2x - 1 ) = 22
<=> 4x2 + 12x + 9 - ( 4x2 - 1 ) = 22
<=> 4x2 + 12x + 9 - 4x2 + 1 = 22
<=> 12x + 10 = 22
<=> 12x = 12
<=> x = 1
c) ( 4x + 3 )( 4x - 3 ) - ( 4x - 5 )2 = 16
<=> 16x2 - 9 - ( 16x2 - 40x + 25 ) = 16
<=> 16x2 - 9 - 16x2 + 40x - 25 = 16
<=> 40x - 34 = 16
<=> 40x = 50
<=> x = 50/40 = 5/4
d) x3 - 9x2 + 27x - 27 = -8
<=> ( x - 3 )3 = -8
<=> ( x - 3 )3 = (-2)3
<=> x - 3 = -2
<=> x = 1
e) ( x + 1 )3 - x2( x + 3 ) = 2
<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2
<=> 3x + 1 = 2
<=> 3x = 1
<=> x = 1/3
f) ( x - 2 )3 - x( x - 1 )( x + 1 ) + 6x2 = 5
<=> x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 = 5
<=> x3 + 12x - 8 - x3 + x = 5
<=> 13x - 8 = 5
<=> 13x = 13
<=> x = 1
a) \(\left(x-3\right)^2-4=0\)
=> \(\left(x-3\right)^2-2^2=0\)
=> \(\left(x-3-2\right)\left(x-3+2\right)=0\)
=> \(\left(x-5\right)\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
=> \(\left(2x+3\right)^2-\left[\left(2x\right)^2-1^2\right]=22\)
=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)
=> \(\left(2x\right)^2+2\cdot2x\cdot3+3^2-4x^2+1=22\)
=> \(4x^2+12x+9-4x^2+1=22\)
=> \(12x+9+1=22\)
=> \(12x+10=22\)
=> 12x = 12
=> x = 1
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
=> \(\left(4x\right)^2-3^2-\left[\left(4x\right)^2-2\cdot4x\cdot5+5^2\right]=16\)
=> \(16x^2-9-\left(16x^2-40x+25\right)=16\)
=> \(16x^2-9-16x^2+40x-25=16\)
=> \(-9+40x-25=16\)
=> \(40x=16+25-\left(-9\right)=16+25+9=50\)
=> x = 50/40 = 5/4
d) \(x^3-9x^2+27x-27=-8\)
=> \(x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3=8\)
=> \(\left(x-3\right)^3=-8\)
=> \(\left(x-3\right)^3=\left(-2\right)^3\)
=> x - 3 = -2 => x = 1
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
=> \(x^3+3x^2+3x+1-x^3-3x^2=2\)
=> \(3x+1=2\)
=> \(3x=1\)=> x = 1/3
f) \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x^2=5\)
=> \(x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3-x\left(x^2-1\right)+6x^2=5\)
=> \(x^3-6x^2+12x-8-x^3+x+6x^2=5\)
=> \(\left(12x+x\right)-8=5\)
=> 13x = 13
=> x = 1
A) \(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)
\(=-5.\left(2x-1\right)\)
B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)
\(=8x^3-y^3-8x^3-y^3\)
\(=-2y^3\)
C) \(x^2+6x+8\)
\(=x^2+6x+9-1\)
\(=\left(x+3\right)^2-1\)
\(=\left(x+3-1\right)\left(x+3+1\right)\)
\(=\left(x+2\right)\left(x+4\right)\)
bài 3 A) \(x^2-16=0\)
\(\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
B) \(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
a)\(\left(3x+2\right)\left(2x-3\right)=6x^2-5x-6\)
b) viết lại đề nhin (dùng f(x) viết mới rõ ra dduocj) ko phải dùng {[(...)]} cho chuẩn vào
c) \(\left(x-2\right)^3-x^2.\left(x-6\right)=x^3-3.x.2\left(x-2\right)-8-x^3+6x^2\)
\(=x^3-6x^2+12x-8-x^3+6x^2=12x-8=4\Rightarrow x=1\)