Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\cdot\frac{2499}{2500}\)
=\(\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot\cdot\cdot\cdot\cdot\frac{49\cdot51}{50\cdot50}\)
=rút gọi tử và mẫu
=\(\frac{2}{3}\cdot\frac{50}{51}\)
=\(\frac{100}{153}\)
A = 89 .1516 .2425 ....24992500
\(A=\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}.....\frac{49.51}{50.50}\)
\(A=\frac{2.3.4.....49}{3.4.5.....50}.\frac{4.5.6.....51}{3.4.5....50}\)
\(A=\frac{2}{50}.\frac{51}{3}\)
\(A=\frac{17}{25}\)
Study well
Bạn vào https://sites.google.com/site/toantieuhocpl/20-tinh-nhanh sẽ có đấy.
=2.4/3^2.3.5/4^2.4.6/5^2.....49.51/50^2
=(2.3.4.....49).(4.5.6.....51)/(3.4.5.....50).(3.4.5.....50)
=2.51/50.3
=17/25
A=8/9.15/16.24/25.....2499/2500
A=2.4/3^2 . 3.5/4^2 . 4.6/5^2 ..... 49.51/50^2
A=2.3.4......49/3.4.5.....50 . 4.5.6......51/3.4.5.....50
A=1/25 (rút gọn từ 2/50) . 51/3
A=51/75
tích nha!
\(\Leftrightarrow A=\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4.4}...\frac{49.51}{50.50}\)
\(\Rightarrow A=\frac{2\cdot4\cdot3\cdot5\cdot...\cdot49.51}{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot50\cdot50}\)
\(\Rightarrow A=\frac{2\cdot51}{3\cdot50}\)
\(\Rightarrow A=\frac{17}{25}\)
#)Giải :
\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{2499}{2500}\)
\(A=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times\frac{4.6}{5.5}\times...\times\frac{49.51}{50.50}\)
\(A=\frac{1\times3\times2\times4\times3\times5\times...\times49\times51}{2\times2\times3\times3\times4\times4\times...\times50\times50}\)
\(A=\frac{1\times51}{2\times50}\)
\(A=\frac{51}{100}\)
\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{2499}{2500}\)
\(=\frac{1\times3}{2\times2}\times\frac{2\times4}{3\times3}\times\frac{3\times5}{4\times4}\times\frac{6\times4}{5\times5}\times...\times\frac{49.51}{50\times50}\)
\(=\frac{1}{2}\times\frac{51}{50}\)
\(=\frac{51}{100}\)
a=8/9+15/16+24/25+....+2499/2500
a=(1-1/9)+(1-1/16)+(1-1/25)+....+(1-1/2500)
a=1-1/9+1-1/16+1-1/25+....+1-1/2500
a=(1+1+...+1)-(1/9+1/16+1/25+....+1/2500)