K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

\(a,A=1^2+3^2+5^2+...+99^2\)

\(A=1+2^2+3^2+4^2+5^2+...+99^2\)

\(A=1+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(A=\left(2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

\(A=\frac{99.100.101}{3}-\frac{99.\left(99+1\right)}{2}\)

\(A=333300-4950=328350\)

6 tháng 9 2019

\(A=1+3+3^2+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

\(\Rightarrow3A-A=3^{101}-1\)

\(\Rightarrow A=\frac{3^{101}-1}{2}\)

\(A=1+3+3^2+3^3+...+3^{99}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A-A=2A=\left(3+3^2+3^3+...+3^{100}\right)-\left(\text{​​}\text{​​}\text{​​}1+3^2+3^3+...+3^{99}\right)\)

\(\Rightarrow2A=3^{100}-1\Rightarrow A=\frac{3^{100}-1}{2}\)

còn 2 bài nữa bạn ơi

25 tháng 7 2017

kết quả là 3 chấm hỏi chấm

26 tháng 7 2017

C=1+3+32+.............+3100

C=\(\frac{3C-C}{2}\)

3C=3+32+33+.............+399+3100+3101

C=1+3+32+..................+399+3100

3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100

Triệt tiêu các số hạng co giá trị tuyệt đối  bằng nhau, ta được:

2C=-1+3100

\(\Rightarrow C=\frac{3^{100}-1}{2}\)

D=\(\frac{2D+D}{3}\)

2D=2101-2100+299-298+..............+23-22

D=2100-299+298-297+............+22-2

2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2

Triệt tiêu các số hạng có giá trị tuyệt đối  bằng nhau, ta được:

3D=2101-2

\(\Rightarrow D=\frac{2^{101}-2}{3}\)

B=\(\frac{3}{1\times4}+\frac{5}{4\times9}+\frac{7}{9\times16}+.........+\frac{19}{81\times100}\)

Quan sát biểu thức, ta có nhận xét:

4-1=3;

9-4=5;

16-9=7;

.......;100-81=19

=> Hiệu hai số ở mẫu bằng giá trị ở tử

\(\Rightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.......+\frac{1}{81}-\frac{1}{100}\)

\(\Rightarrow B=1-\frac{1}{100}\)

\(B=\frac{99}{100}< \frac{100}{100}\)

Vậy B<1

25 tháng 7 2017

Ta có :

\(A=\frac{1}{3}+\frac{2}{3^2}+......+\frac{100}{3^{100}}\) \(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+.....+\frac{100}{3^{99}}\)

\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)= 2A

Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\) \(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}\)

\(\Rightarrow3B-B=3-\frac{1}{3^{99}}=2B\) \(\Rightarrow B=\frac{3}{2}-\frac{1}{3^{99}.2}\)

\(\Rightarrow2A=\frac{3}{2}-\frac{1}{3^{99}.2}-\frac{100}{3^{100}}\)\(\Rightarrow A=\frac{3}{4}-\frac{1}{3^{99}.4}-\frac{100}{3^{100}}< \frac{3}{4}\Rightarrow\left(đpcm\right)\)

Ta có :

\(C=1+3+3^2+....+3^{100}\) \(\Rightarrow C-1=3+3^2+....+3^{100}\)

\(\Rightarrow3\left(C-1\right)=3^2+3^3+.....+3^{101}\)\(\Rightarrow3C-3-\left(C-1\right)=3^{101}-3\)

\(\Rightarrow2C-2=3^{101}-3\Rightarrow2C=3^{101}-1\)\(\Rightarrow C=\frac{3^{101}-1}{2}\)

Ta có :

\(D=2^{100}-2^{99}+2^{98}-.....-2\) \(\Rightarrow2D=2^{101}-2^{100}+2^{99}-.....-2^2\)

\(\Rightarrow2D+D=2^{101}-2=3D\) \(\Rightarrow D=\frac{2^{101}-2}{3}\)

25 tháng 7 2017

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(2A=1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)

Ta thấy biểu thức trong dấu ngoặc nhỏ hơn 1/2 ( tự chứng minh ) nên 2A < 1 + 1/2 

\(\Rightarrow A< \frac{3}{4}\)

25 tháng 7 2017

\(C=1+3+3^2+3^3+...+3^{100}\)

\(3C=3+3^2+3^3+3^4+...+3^{101}\)

\(3C-C=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)

\(2C=3^{101}-1\)

\(C=\frac{3^{101}-1}{2}\)