\(log_{\sqrt{2}}\sqrt{2};log_77\)

b) \(log_{10}1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1 2024

\(log_{\sqrt{2}}\sqrt{2}=1;log_77=1\)

\(log_{10}1=0;log_91=0\)

\(3^{log_35}=5;7^{log_7\sqrt{2}}=\sqrt{2}\)

\(log_88^{-10}=-10;log_55^{\sqrt{3}}=\sqrt{3}\)

NV
28 tháng 10 2020

d.

\(\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)

e.

\(\Leftrightarrow cosx.cos\left(\frac{\pi}{12}\right)-sinx.sin\left(\frac{\pi}{12}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{12}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{12}=\frac{\pi}{3}+k2\pi\\x+\frac{\pi}{12}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

NV
28 tháng 10 2020

2.a.

ĐKXĐ: ...

\(\sqrt{3}tanx-\frac{6}{tanx}+2\sqrt{3}-3=0\)

\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-2\\tanx=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-2\right)+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)

b.

ĐKXĐ: \(x\ne k\pi\)

\(1-sin2x=2sin^2x\)

\(\Leftrightarrow1-2sin^2x-sin2x=0\)

\(\Leftrightarrow cos2x-sin2x=0\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow...\)

15 tháng 3 2020

a) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-1}{2x}=\lim\limits_{x\rightarrow0}\frac{2x}{2x\left(\sqrt{1+2x}+1\right)}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{1+2x}+1}=\frac{1}{2}\)

b) \(\lim\limits_{x\rightarrow0}\frac{4x}{\sqrt{9+x}-3}=\lim\limits_{x\rightarrow0}\frac{4x\left(\sqrt{9+x}+3\right)}{x}=\lim\limits_{x\rightarrow0}[4\left(\sqrt{9+x}+3\right)=24\)

c) \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}=\lim\limits_{x\rightarrow2}\frac{x-2}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=\lim\limits_{x\rightarrow2}\frac{1}{\sqrt{x+7}+3}=\frac{1}{6}\)

d) \(\lim\limits_{x\rightarrow1}\frac{3x-2-\sqrt{4x^2-x-2}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\frac{\left(3x-2\right)^2-\left(4x^2-4x-2\right)}{(x^2-3x+2)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(5x-6\right)}{\left(x-1\right)\left(x-2\right)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\frac{1}{2}\\ \\\\ \\ \\ \\ \)

e)\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\frac{2x+7-\left(x^2-8x+16\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x-9\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{x-9}{\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=-8\)

f) \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}-3}{2-\sqrt{x+3}}=\lim\limits_{x\rightarrow1}\frac{(2x-2)\left(2+\sqrt{x+3}\right)}{\left(1-x\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\frac{-2\left(2+\sqrt{x+3}\right)}{\sqrt{2x+7}+3}=\frac{-4}{3}\)

g) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}=\lim\limits_{x\rightarrow0}\frac{x^2\left(\sqrt{x^2+16}+4\right)}{x^2\left(\sqrt{x^2+1}+1\right)}=4\)

h)

\(\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-3}{x-4}+\lim\limits_{x\rightarrow4}\frac{3-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{1}{\sqrt{x+5}+4}+\lim\limits_{x\rightarrow4}\frac{8-2x}{\left(x-4\right)\left(3+\sqrt{2x+1}\right)}=\frac{1}{7}-\frac{1}{3}=\frac{-4}{21}\)

k) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+1}+1}+\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+4}+2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)

NV
1 tháng 4 2020

a/ \(y'=\frac{\left(2x^2-5x+2\right)'}{2\sqrt{2x^2-5x+2}}=\frac{4x-5}{2\sqrt{2x^2-5x+2}}\)

b/ \(y'=\frac{\left(x+\sqrt{x}\right)'}{2\sqrt{x+\sqrt{x}}}=\frac{1+\frac{1}{2\sqrt{x}}}{2\sqrt{x+\sqrt{x}}}=\frac{2\sqrt{x}+1}{4\sqrt{x^2+x\sqrt{x}}}\)

c/ \(y'=\sqrt{x^2+3}+\left(x-2\right).\frac{\left(x^2+3\right)'}{2\sqrt{x^2+3}}=\frac{2x^2-2x+3}{\sqrt{x^2+3}}\)

d/ \(y'=3\left(1+\sqrt{1-2x}\right)^2.\left(1+\sqrt{1-2x}\right)'=\frac{-3\left(1+\sqrt{1-2x}\right)^2}{\sqrt{1-2x}}\)

e/ \(y'=\frac{1}{2}\sqrt{\frac{x-1}{x^3}}\left(\frac{x^3}{x-1}\right)'=\frac{1}{2}\sqrt{\frac{x-1}{x^3}}\left(\frac{x^2\left(x-1\right)-x^3}{\left(x-1\right)^2}\right)=\frac{-x^2}{2\left(x-1\right)^2}\sqrt{\frac{x-1}{x^3}}\)

f/ \(y'=\frac{4\sqrt{x^2+2}-\left(4x+1\right)\left(\sqrt{x^2+2}\right)'}{x^2+2}=\frac{4\sqrt{x^2+2}-\left(4x+1\right).\frac{x}{\sqrt{x^2+2}}}{x^2+2}\)

\(=\frac{4\left(x^2+2\right)-\left(4x^2+x\right)}{\left(x^2+2\right)\sqrt{x^2+2}}=\frac{8-x}{\left(x^2+2\right)\sqrt{x^2+2}}\)

NV
1 tháng 10 2020

a/

\(\Leftrightarrow3\left(1-sin^22x\right)+4sin2x-4=0\)

\(\Leftrightarrow-3sin^22x+4sin2x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(\frac{1}{3}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(\frac{1}{3}\right)+k\pi\end{matrix}\right.\)

b/

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)

NV
1 tháng 10 2020

f/

\(\Leftrightarrow4\left(1-2sin^2\frac{x}{2}\right)-5sin\frac{x}{2}=1\)

\(\Leftrightarrow8sin^2\frac{x}{2}+5sin\frac{x}{2}-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\frac{x}{2}=-1\\sin\frac{x}{2}=\frac{3}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\pi+k4\pi\\x=2arcsin\left(\frac{3}{8}\right)+k4\pi\\x=2\pi-2arcsin\left(\frac{3}{8}\right)+k4\pi\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Lời giải:
\(\lim\limits_{n\to+\infty}\frac{\sqrt[3]{n^3+5n^2-7}}{\sqrt{3n^2-n+2}}=\lim\limits_{n\to+\infty}\frac{\frac{\sqrt[3]{n^3+5n^2-7}}{n}}{\frac{\sqrt{3n^2-n+2}}{n}}\)

\(=\lim\limits _{n\to +\infty }\frac{\sqrt[3]{1+\frac{5}{n}-\frac{7}{n^3}}}{\sqrt{3-\frac{1}{n}+\frac{2}{n^2}}}=\frac{1}{\sqrt{3}}\)

Đáp án A.

28 tháng 2 2020
https://i.imgur.com/v6W1QWU.jpg
28 tháng 2 2020

ai giup voi