K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

a) (x2 – 2x+ 1)(x – 1)

= x2 . x + x2.(-1) + (-2x). x + (-2x). (-1) + 1 . x + 1 . (-1)

= x3 - x2 - 2x2 + 2x + x – 1

= x3 - 3x2 + 3x – 1

b) (x3 – 2x2 + x -1)(5 – x)

= x3 . 5 + x3 . (-x) + (-2 x2) . 5 + (-2x2)(-x) + x . 5 + x(-x) + (-1) . 5 + (-1) . (-x)

= 5 x3 – x4 – 10x2 + 2x3 +5x – x2 – 5 + x

= - x4 + 7x3 – 11x2+ 6x - 5.

Suy ra kết quả của phép nhan:

(x3 – 2x2 + x -1)(x - 5) = (x3 – 2x2 + x -1)(-(5 - x))

= - (x3 – 2x2 + x -1)(5 – x)

= - (- x4 + 7x3 – 11x2+ 6x -5)

= x4 - 7x3 + 11x2- 6x + 5


19 tháng 4 2017

a) (x2 – 2x+ 1)(x – 1)

= x2 . x + x2.(-1) + (-2x). x + (-2x). (-1) + 1 . x + 1 . (-1)

= x3 - x2 - 2x2 + 2x + x – 1

= x3 - 3x2 + 3x – 1

b) (x3 – 2x2 + x -1)(5 – x)

= x3 . 5 + x3 . (-x) + (-2 x2) . 5 + (-2x2)(-x) + x . 5 + x(-x) + (-1) . 5 + (-1) . (-x)

= 5 x3 – x4 – 10x2 + 2x3 +5x – x2 – 5 + x

= - x4 + 7x3 – 11x2+ 6x - 5.

Suy ra kết quả của phép nhan:

(x3 – 2x2 + x -1)(x - 5) = (x3 – 2x2 + x -1)(-(5 - x))

= - (x3 – 2x2 + x -1)(5 – x)

= - (- x4 + 7x3 – 11x2+ 6x -5)

= x4 - 7x3 + 11x2- 6x + 5



AH
Akai Haruma
Giáo viên
26 tháng 5 2020

Lời giải:

a)

\((x-2)(x-3)+2x=(x-2)^2-2\)

\(\Leftrightarrow (x-2)(x-2-1)+2x=(x-2)^2-2\)

\(\Leftrightarrow (x-2)^2-(x-2)+2x=(x-2)^2-2\)

\(\Leftrightarrow x+4=0\Rightarrow x=-4\)

b)

\((x-1)^2+3x(x-1)+7=(2x-1)^2+5(x-3)\)

\(\Leftrightarrow (x-1)^2+3x(x-1)+7=x^2+(x-1)^2+2x(x-1)+5(x-3)\)

\(\Leftrightarrow x(x-1)+7=x^2+5(x-3)\)

\(\Leftrightarrow 6x=22\Rightarrow x=\frac{11}{3}\)

c)

\(5(x^2-2x-1)+2(3x-2)=5(x+1)^2=5(x^2-2x+1)\)

\(\Leftrightarrow -5+2(3x-2)=5\)

\(\Leftrightarrow 3x-2=5\Rightarrow x=\frac{7}{3}\)

d)

\((x-1)(x^2+x+1)-2x=x(x-1)(x+1)=x(x^2-1)\)

\(\Leftrightarrow x^3-1-2x=x^3-x\Leftrightarrow -1-x=0\Rightarrow x=-1\)

11 tháng 12 2017

1,

a,\(2x\left(3x^2-5x+3\right)\)

\(=6x^3-10x^2+6x\)

b,\(-2x\left(x^2+5x-3\right)\)

\(=-2x^3-10x^2+6x\)

c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)

\(=-x^4+2x^2-\dfrac{3}{2}x\)

Bài 2:

a) \(\left(2x-1\right)\left(x^2-5-4\right)\)

\(=\left(2x-1\right)\left(x^2-9\right)\)

\(=2x^3-18x-x^2+9\)

b) \(-\left(5x-4\right)\left(2x+3\right)\)

\(=-\left(10x^2+15x-8x-12\right)\)

\(=-10x^2-7x+12\)

c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)

\(=8x^3-y^3\)

16 tháng 6 2018

\(a,x^2\left(x-2x^3\right)\)

\(=x^3-2x^5\)

\(b,\left(x-2\right)\left(x-x^2+4\right)\)

\(=x^2-x^3+4x-2x+2x^2-8\)

\(=3x^2-x^3+2x-8\)

\(c,\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

\(d,\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=\left(6x^2+x-2\right)\left(3-x\right)\)

\(=18x^2+3x-6-6x^3-x^2+2x\)

\(=17x^2+5x-6-6x^3-x^2\)

\(e,\left(x+3\right)\left(x^2+3x-5\right)\)

\(=x^3+3x^2-5x+3x^2+9x-15\)

\(=x^3+6x^2+4x-15\)

\(f,\left(xy-2\right)\left(x^3-2x-6\right)\)

\(=x^4y-2x^2y-6xy-2x^3+4x-12\)

\(g,\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)

\(=20x^5-4x^4+8x^3-12x^2-5x^4+x^3-2x^2+3x+10x^3-2x^2+4x-6\)

\(=20x^5-9x^4+19x^3-16x^2+7x-6\)

16 tháng 6 2018

a. x2(x−2x3)= x3-2x5

b. (x−2)(x−x2+4)= x2-x3+4x-2x+2x2-8= -x3+3x2+2x-8

c. (x2−1)(x2+2x)= x4+2x3-x2-2x

d. (2x−1)(3x+2)(3−x) = (6x2+x-2)(3-x)=18x2-6x3+3x-x2-6+2x =-6x3+17x2+5x-6

e. (x+3)(x2+3x−5)= x3+3x2-5x+3x2+9x-15= x3+6x2+4x-15

f. (xy−2)(x3−2x−6)= x4y-2x2y-6xy-2x3+4x+12

g. (5x3−x2+2x−3)(4x2−x+2)= 20x5-9x4+19x3-12x2+7x-6

Bài 1: Rút gọn các biểu thức sau: a) \(3x^2\) - 2x( 5+ 1,5x) +10 b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x) c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\) Bài 2: Tìm x, biết: a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24 b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\) c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\) Bài 3: Tính giá trị của các...
Đọc tiếp

Bài 1: Rút gọn các biểu thức sau:

a) \(3x^2\) - 2x( 5+ 1,5x) +10

b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)

c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)

Bài 2: Tìm x, biết:

a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24

b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)

c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)

Bài 3: Tính giá trị của các biểu thức sau:

a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)

Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:

a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)

b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)

c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)

Bài 5: Tính giá trị của biểu thức:

a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)

b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)

c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)

7
AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)

\(=10-10x=10(1-x)\)

b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)

\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)

\(=-7x^2+7x=7x(1-x)\)

c)

\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)

\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)

\(=\left\{3-x-5[9x-2]\right\}(-2x)\)

\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)

\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)

\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)

b)

\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)

\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)

\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)

\(2x^2+3(x^2-1)=5x(x+1)\)

a: \(=6x^2-9x+14x-21-4x^2+20x-25-2x\left(x+6\right)+5-31x\)

\(=2x^2-6x-41-2x^2-12x\)

=-18x-41

b: \(=2x^2-6x-2x^2+6x+14=14\)

c: \(=x^3+1-x^3+1=2\)

10 tháng 8 2020

a); b) Do tích = 0 

=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)

=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)

10 tháng 8 2020

a; *x-1=0 <=>x=1

    *2x+5=0 <=>x=-2,5

    *x2+2=0 <=> ko có x

b; tương tự a

2 tháng 9 2016

Bài 1:

a)(4x-3)(3x+2)-(6x+1)(2x-5)+1

=12x2-x-6-12x2+28x+5+1

=27x

b)(3x+4)2+(4x-1)2+(2+5x)(2-5x)

=9x2+24x+16+16x2-8x+1+4-25x2

=16x+21

c)(2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)-9

=8x3+1+8-27x3-9

=-19x3

 

2 tháng 9 2016

Bài 2:

a)3x(x-4)-x(5+3x)=-34

=>3x2-12x-3x2-5x=-34

=>-17x=-34

=>x=2

Vậy x=2

b)(3x+1)2+(5x-2)2=34(x+2)(x-2)

=>9x2+6x+1+25x2-20x+4=34(x2-4)

=>34x2-14x+5-34x2+136=0

=>-14x+141=0

=>-14x=-141

=>x=\(\frac{141}{14}\)

Vậy x=\(\frac{141}{14}\)

c)x3+3x2+3x+28=0

=>x3-x2+7x+4x2-4x+28=0

=>x(x2-x+7)+4(x2-x+7)=0

=>(x+4)(x2-x+7)=0

\(\Rightarrow\left[\begin{array}{nghiempt}x+4=0\\x^2-x+7=0\left(2\right)\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=-4\\\left(2\right)\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}>0\end{array}\right.\)

=>(2) vô nghiệm

Vậy x=-4