K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)

\(=\frac{1}{3}-\frac{1}{21}\)

\(=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}\)

15 tháng 4 2019

\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)

\(A=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+...+\left(\frac{1}{19}-\frac{1}{19}\right)-\frac{1}{21}\)

\(A=\frac{1}{3}-\frac{1}{21}\)

\(A=\frac{2}{7}\)

19 tháng 2 2017

lúc đầu ý bn là 5/1.3 đúng k, mk chỉnh lại như thế cho tiện nhé

a) \(\frac{5}{1\times3}+\frac{5}{3\times5}+\frac{5}{5\times7}+...+\frac{5}{99\times101}\)

\(=\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}\times\frac{100}{101}=\frac{250}{101}\)

b) \(\frac{3^2}{8\times11}+\frac{3^2}{11\times14}+\frac{3^2}{14\times17}+...+\frac{3^2}{197\times200}\)

\(=\frac{9}{8\times11}+\frac{9}{11\times14}+\frac{9}{14\times17}+...+\frac{9}{197\times200}\)

\(=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\right)\)

\(=3\left(\frac{1}{8}-\frac{1}{200}\right)\)

\(=3\times\frac{3}{25}=\frac{9}{25}\)

19 tháng 2 2017

Ta có \(\frac{3^2}{8.11}+\frac{3^2}{11.14}+...+\frac{3^2}{197.200}\)

\(\Rightarrow3^2.\left(\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{197.200}\right)\)

\(\Rightarrow9.\frac{1}{3}.\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)

\(\Rightarrow3.\left(1-\frac{1}{200}\right)\)

\(\Rightarrow3.\frac{199}{200}=\frac{597}{200}\)

11 tháng 4 2016

4tr65rt5uybc

23 tháng 4 2016

ko hiẻu

24 tháng 3 2017

A. Đặt A= biểu thức đã cho

=>\(\frac{A}{3}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

=>\(\frac{A}{3}.2=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)

=>\(\frac{2A}{3}-\frac{A}{3}=2-\frac{1}{2^9}\)

=>\(A=\frac{3\left(2^{10}-1\right)}{2^9}\)

B. Đặt B=biểu thức đã cho

\(\Rightarrow\frac{B}{2}=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2015.2017}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)

\(=\frac{1}{3}-\frac{1}{2017}=\frac{2014}{6051}\)

\(\Rightarrow B=\frac{4028}{6051}\)

19 tháng 6 2019

#)Giải :

\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{2499}{2500}\)

\(A=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times\frac{4.6}{5.5}\times...\times\frac{49.51}{50.50}\)

\(A=\frac{1\times3\times2\times4\times3\times5\times...\times49\times51}{2\times2\times3\times3\times4\times4\times...\times50\times50}\)

\(A=\frac{1\times51}{2\times50}\)

\(A=\frac{51}{100}\)

19 tháng 6 2019

\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{2499}{2500}\)

     \(=\frac{1\times3}{2\times2}\times\frac{2\times4}{3\times3}\times\frac{3\times5}{4\times4}\times\frac{6\times4}{5\times5}\times...\times\frac{49.51}{50\times50}\)

       \(=\frac{1}{2}\times\frac{51}{50}\)

        \(=\frac{51}{100}\)

14 tháng 3 2018

a=8/9+15/16+24/25+....+2499/2500

a=(1-1/9)+(1-1/16)+(1-1/25)+....+(1-1/2500)

a=1-1/9+1-1/16+1-1/25+....+1-1/2500

a=(1+1+...+1)-(1/9+1/16+1/25+....+1/2500)

22 tháng 2 2017

a) Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

. . .

\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\right)\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\cdot\frac{99}{50}=\frac{99}{200}< \frac{100}{200}=\frac{1}{2}\left(đpcm\right)\)

b) Ta có :

\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)

\(\Rightarrow1-\frac{1}{4}+1-\frac{1}{9}+...+1-\frac{1}{2500}>48\)

\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 49\)

Lại có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

. . .

\(\frac{1}{50^2}< \frac{1}{49\cdot50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{49}{50}< 1\)

\(\Rightarrow-\left(\frac{1}{2^2}+...=\frac{1}{50^2}\right)>1\)

\(\Rightarrow49-\left(\frac{1}{2^2}+...+\frac{1}{50^2}\right)>49-1=48\)

hay \(\frac{3}{4}+\frac{8}{9}+...+\frac{2499}{2500}>48\left(đpcm\right)\)