K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 1 2022

\(\dfrac{x}{x-3}+\dfrac{-9}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{-9}{x\left(x-3\right)}=\dfrac{x^2-9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=\dfrac{x+3}{x}\)

\(\dfrac{x-5}{x^2-4x+4}:\dfrac{x^2-25}{2x-4}=\dfrac{x-5}{\left(x-2\right)^2}.\dfrac{2\left(x-2\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{2}{\left(x-2\right)\left(x+5\right)}\)

21 tháng 4 2017

Giải bài 25 trang 47 Toán 8 Tập 1 | Giải bài tập Toán 8

16 tháng 6 2017

dap-an-bai-25_fix

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

17 tháng 11 2017

Bạn siêng thật !!!

11 tháng 4 2017

\(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\left(ĐKXĐ:x\ne\pm1\right)\\ \Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Rightarrow x^2+x-2x=0\\ \Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\Rightarrow x=1\left(loại\right)\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={0}.

b)

\(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(x+2\right)^2+3-2x=x^2+10\\ \Leftrightarrow x^2+4x+4-2x-x^2=10-3\)

\(\Leftrightarrow2x+4=7\Leftrightarrow2x=7-4=3\Rightarrow x=\dfrac{3}{2}\left(loại\right)\)

vậy phương trình đã cho vô nghiệm.

c)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\left(ĐKXĐ:x\ne\pm5\right)\)

\(\Leftrightarrow\dfrac{\left(x+5\right)^2}{\left(x-5\right)\left(x+5\right)}-\dfrac{\left(x-5\right)^2}{\left(x+5\right)\left(x-5\right)}=\dfrac{20}{\left(x+5\right)\left(x-5\right)}\)

\(\Rightarrow\left(x+5\right)^2-\left(x-5\right)^2=20\)

\(\Leftrightarrow x^2+25x+25-x^2+25x-25=20\\ \Leftrightarrow50x=20\Rightarrow x=\dfrac{2}{5}\)

vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{2}{5}\right\}\)

d)\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\left(ĐKXĐ:x\ne\pm\dfrac{2}{3}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\\ \Leftrightarrow9x^2+12x+4-18x+12-9x^2=0\\ \Leftrightarrow16-6x=0\Leftrightarrow6x=16\Rightarrow x=\dfrac{16}{6}\)

vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{16}{6}\right\}\)

e)\(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\left(ĐKXĐ:x\ne\dfrac{1}{5};\dfrac{3}{5}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(3\left(3-5x\right)+2\left(5x-1\right)=4\\ \Leftrightarrow9-15x+10x-2=4\\ \Leftrightarrow-5x=-3\Rightarrow x=\dfrac{3}{5}\left(loại\right)\)

vậy phương trình đã cho vô nghiệm.

f)

\(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\left(ĐKXĐ:x\ne\pm\dfrac{1}{4}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(-3\left(4x+1\right)=2\left(4x-1\right)-8-6x\\ \Leftrightarrow-12x-3=8x-2-8-6x\\ \Leftrightarrow-14x=-7\Rightarrow x=\dfrac{1}{2}\)

vậy phương trình có tập nghiệm là \(S=\left\{\dfrac{1}{2}\right\}\)

g)

\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\left(ĐKXĐ:y\ne\pm2\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(y-1\right)\left(y+2\right)-5\left(y-2\right)=12+y^2-4\\ \Leftrightarrow y^2+y-2-5y+10=12+y^2-4\\ \Leftrightarrow-4y+8=8\Leftrightarrow-4y=0\Rightarrow y=0\)

vậy phương trình có tập nghiệm là S={0}

h)

\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\left(ĐKXĐ:x\ne\pm1\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow x^2+2x+1-x^2+2x-1=4\\ \Leftrightarrow4x=4\Rightarrow x=1\)

vậy phương trình có tập nghiệm là S={1}.

i)

\(\dfrac{2x-3}{x+2}-\dfrac{x+2}{x-2}=\dfrac{2}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(2x-3\right)\left(x-2\right)-\left(x+2\right)=2\\ \Leftrightarrow2x^2-7x+6-x^2-4x-4=2\\ \Leftrightarrow x^2-11x=0\Rightarrow\left[{}\begin{matrix}x=0\\x-11=0\Rightarrow x=11\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={0;11}

j)

\(\dfrac{x-1}{x^2-4}=\dfrac{3}{2-x}\left(ĐKXĐ:x\ne\pm2\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(x-1=-3\left(x+2\right)\Leftrightarrow x-1=-3x-6\\ \Leftrightarrow4x=5\Rightarrow x=\dfrac{5}{4}\)

vậy phương trình có tập nghiệm là \(S=\left\{\dfrac{5}{4}\right\}\)

11 tháng 4 2017

có tố chất đánh máy !!!eoeoeoeoleuleu

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

12 tháng 3 2018

bài 1:

b,\(\dfrac{x+2}{x}=\dfrac{x^2+5x+4}{x^2+2x}+\dfrac{x}{x+2}\)(ĐKXĐ:x ≠0,x≠-2)

<=>\(\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x^2+5x+4}{x\left(x+2\right)}+\dfrac{x^2}{x\left(x+2\right)}\)

=>\(x^2+4x+4=x^2+5x+4+x^2\)

<=>\(x^2-x^2-x^2+4x-5x+4-4=0\)

<=>\(-x^2-x=0< =>-x\left(x+1\right)=0< =>\left[{}\begin{matrix}x=0\left(loại\right)\\x+1=0< =>x=-1\left(nhận\right)\end{matrix}\right.\)

vậy...............

d,\(\left(x+3\right)^2-25=0< =>\left(x+3-5\right)\left(x+3+5\right)=0< =>\left(x-2\right)\left(x+8\right)=0< =>\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

vậy............

bài 3:

g,\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-x-2}\)(ĐKXĐ:x khác -1,x khác 2)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-2x+x-2}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x\left(x-2\right)+\left(x-2\right)}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

<=>\(\dfrac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

=>\(4x-8-2x-2=x+3\)

<=>\(x=13\)

vậy..............

mấy ý khác bạn làm tương tụ nhé

chúc bạn học tốt ^ ^

26 tháng 1 2017

a)\(\frac{3+2x}{2+x}-1=\frac{2-x}{2+x}\) (x khác -2)

\(\Leftrightarrow\frac{3+2x}{2+x}-\frac{2-x}{2+x}=1\)

\(\Leftrightarrow\frac{1+3x}{2+x}=1\)

\(\Leftrightarrow1+3x=2+x\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

b) \(\frac{5-2x}{3}+\frac{x^2-1}{3}x-1=\frac{\left(x-2\right)\left(1-3x\right)}{9x-3}\) (x khác 1/3)

\(\Leftrightarrow\frac{x^3-3x+5}{3}+\frac{\left(x-2\right)\left(3x-1\right)}{3\left(3x-1\right)}=1\)

\(\Leftrightarrow\frac{x^2-2x+3}{3}=1\)

\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c) \(\frac{1}{\left(3-2x\right)^2}-\frac{4}{\left(3+2x\right)^2}=\frac{3}{9-4x^2}\) (x khác +- 3/2)

\(\Leftrightarrow\frac{\left(3+2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}-\frac{4\left(3-2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}=\frac{9}{\left(3+2x\right)^2\left(3-2x\right)^2}\)

\(\Leftrightarrow9+12x+4x^2-4\left(9-12x+4x^2\right)-9=0\)

\(\Leftrightarrow-12x^2+60x-36=0\)

\(\Leftrightarrow-12\left(x^2-5x+3\right)=0\Leftrightarrow x^2-5x+3=0\)

\(\Rightarrow\Delta=b^2-4ac=25-12=13>0\)

\(x_1=\frac{-b+\sqrt{\Delta}}{2ac}=\frac{5+\sqrt{13}}{6}\)

\(x_2=\frac{5-\sqrt{13}}{6}\)

d) \(\frac{1}{x^2+2x+1}=\frac{4}{x+2x^2+x^3}=\frac{5}{2x+2x^2}\)

\(\Leftrightarrow\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}=\frac{x^2+2x+1-\left(x+2x^2+x^3\right)+2x+2x^2}{1-4+5}\)

(dấu bằng thứ nhất của câu d là dấu cộng à???)

26 tháng 1 2017

ukm

28 tháng 6 2017

Phép trừ các phân thức đại số

7 tháng 7 2018

1)

\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)

\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)

\(\Leftrightarrow x=105\)

b)

\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)

\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)

\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)

\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)

\(\Leftrightarrow50-x=0\)

\(\Leftrightarrow x=50\)

7 tháng 7 2018

2)

\(\left(5x+1\right)^2=\left(3x-2\right)^2\)

\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)

b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)

\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)

\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)

\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)

\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

10 tháng 12 2017

Bài 1:

\(B=\dfrac{4\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\dfrac{\left(x^2-25\right)}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)

\(=\dfrac{4\left(x+3\right)^2}{\left(3x+5-2x\right)\left(3x+5+2x\right)}-\dfrac{\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3-x\right)\left(2x+3+x\right)}{\left(4x+15-x\right)\left(4x+15+x\right)}\)

\(=\dfrac{4\left(x+3\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{\left(x-5\right)\left(x+5\right)}{5\left(x-5\right)\left(x+1\right)}-\dfrac{3\left(x+3\right)\left(x+1\right)}{15\left(x+5\right)\left(x+3\right)}\)

\(=\dfrac{4\left(x+3\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{x+5}{5\left(x+1\right)}-\dfrac{x+1}{5\left(x+5\right)}\)

\(=\dfrac{4\left(x+3\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{\left(x+5\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{\left(x+1\right)^2}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{4\left(x^2+6x+9\right)-\left(x^2+10x+25\right)-\left(x^2+2x+1\right)}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{4x^2+24x+36-x^2-10x-25-x^2-2x-1}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{2x^2+12x+10}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{2\left(x^2+6x+5\right)}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{2\left(x^2+5x+x+5\right)}{5\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{2\left(x+5\right)\left(x+1\right)}{5\left(x+5\right)\left(x+1\right)}=\dfrac{2}{5}\)

10 tháng 12 2017

đc bn , nhg mà đề bài câu a b2 sao tự nhiên lại có " n "

bn xem lại đề đi