K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

a) A =1+3+32+33+...+3100

   3A = 3 + 32+33+...+3101

   3A-A=( 3 + 32+33+...+3101)-(1+3+32+33+...+3100)

    2A = 3101-1

    A = \(\frac{3^{101}-1}{2}\)

    Thùy An làm sai rùi

2 tháng 8 2016

a) A=1+3+3^2+...+3^100

3A=3+3^2+....+3^101

3A-A=1+3^101

A=(1+3^101)/2

27 tháng 9 2019

A = 2100 - 299 + 298 - 297 +...+ 22 - 2

=> 2A = 2101 - 2100+299 - 298+...+23-22

=> 2A+A= 2101 -2

=> \(A=\frac{2^{101}-2}{3}\)

phần B bn lm tương tự nha!
 

11 tháng 12 2015

\(A=2^{100}-2^{99}+2^{98}-2^{97}+....+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2\)

\(2A+A=2^{101}-2\)

\(A=\frac{2^{101}-2}{3}\)

b) tương tự

\(B=\frac{3^{101}+1}{4}\)

22 tháng 8 2016

A = 2100 - 299 + 298 - 297 + ... + 22 - 2

   = ( 2100 + 298 + ... + 2) - ( 299 + 297 + ... + 2 )

   = ( 2100 + 298 + ... + 2) - 2( 299 + 297 + ... + 2 ) + ( 299 + 297 + ... + 2 )

   = 299 + 297 + ... + 2 

=> 4A = 2103 + 299 + ... + 23

=> 3A = 2103 - 2

=> A = \(\frac{2^{103}-2}{3}\)

18 tháng 4 2016

b) B = 2100 - 299 + 298 - 297 + ...+ 22 - 2

=> B x 2 = 2101 - 2100 + 299 -  298  + ...23 - 22

=> B x 2 + B = (2101 - 2100 + 299 -  298  + ...23 - 22 ) + (2100 - 299 + 298 - 297 + ...+ 22 - 2)

  <=>  B x 3 = 2101 - 2 = 2. ( 299 - 1)

=> B = \(\frac{2.\left(2^{99}-1\right)}{3}\)

Phần c) Làm tương tự Lấy C x 3 rồi + với C.

a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(\Rightarrow A+2A=2^{101}-2\)

  \(A\left(1+2\right)=2^{101}-2\)

  \(A.3=2^{101}-2\)

  \(A=\frac{2^{101}-2}{3}\)

b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3\)

\(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2\)

\(\Rightarrow B+3B=3^{101}-3\)

\(B\left(1+3\right)=3^{101}-3\)

\(4B=3^{101}-3\)

   \(B=\frac{3^{101}-3}{4}\)

2 tháng 7 2018

a, \(A=...\)

=>\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=>\(2A+A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2+2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=>\(3A=2^{101}-2\)

=>\(A=\frac{2^{101}-2}{3}\)

b, tương tự a \(B=\frac{3^{101}+1}{4}\)

27 tháng 9 2020

A = 2100- 299 + 298 - 297 + ... + 22 - 2

=> 2A =  2101 - 2100 + 299 - 298 + ... + 23 - 22 

Khi đó 2A  + A = (2101 - 2100 + 299 - 298 + ... + 23 - 22) + (2100- 299 + 298 - 297 + ... + 22 - 2)

=> 3A = 2101 - 2

=> \(A=\frac{2^{201}-2}{3}\)

b) Ta có B = 3100- 399 + 398 - 397 + ... + 32 - 3 + 1

=> 3B = 3101 - 3100 + 399 - 398  + ... + 33 - 32 + 3

Khi đó 3B + B = (3101 - 3100 + 399 - 398  + ... + 33 - 32 + 3) + (3100- 399 + 398 - 397 + ... + 32 - 3 + 1)

=> 4B = 3101 + 1

=> B = \(\frac{3^{101}+1}{4}\)

27 tháng 9 2020

a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=> \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=> \(2A+A=\left(2^{101}-2^{100}+...-2^2\right)+\left(2^{100}-2^{99}+...-2\right)\)

<=> \(3A=2^{101}-2\)

=> \(A=\frac{2^{101}-2}{3}\)

b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)

=> \(3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

=> \(3A+A=\left(3^{101}-3^{100}+...+3\right)+\left(3^{100}-3^{99}+...+1\right)\)

<=> \(4A=3^{101}+1\)

=> \(A=\frac{3^{101}+1}{4}\)

29 tháng 7 2017

Vế A

Ta có : A = 2100−299+298−297+...+22−2

2A = \(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=> 2A + A = 3A = \(2^{100}-2\Rightarrow A=\dfrac{2^{100}-2}{3}\)

=================

B làm tương tự , nhân 3 lên rồi cộng lại là ra