Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{\left(37+12\right)\left(37^2+12^2-37\cdot12\right)}{49-37\cdot12}\)
\(=\dfrac{49\cdot1069}{49-37\cdot12}\simeq-132.61\)
b: \(=\dfrac{\left(52-48\right)\left(52^2+48^2+52\cdot48\right)}{4+52\cdot48}\)
\(=\dfrac{4\cdot7504}{4+52\cdot48}=\dfrac{7504}{625}\)
Giải phương trình:
a) x+1 /9 + x+2 /8 = x+3 /7 + x+4 /6
b) x+43 /57 + x+46 /54 = x+49 /51 + x+52 /48
a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+2\right)=\left(\frac{x+3}{7}+1\right)+\left(\frac{x+4}{6}+1\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
Vậy x = -10
b) \(\frac{x+43}{57}+\frac{x+46}{54}=\frac{x+49}{51}+\frac{x+52}{48}\)
\(\Rightarrow\left(\frac{x+43}{57}+1\right)+\left(\frac{x+46}{54}+1\right)=\left(\frac{x+49}{51}+1\right)+\left(\frac{x+52}{48}+1\right)\)
\(\Rightarrow\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
\(\Rightarrow\frac{x+100}{57}+\frac{x+100}{54}-\frac{x+100}{51}-\frac{x+100}{48}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)=0\)
Mà \(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\ne0\)
\(\Rightarrow x+100=0\)
\(\Rightarrow x=-100\)
Vậy x = -100
a.\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
=>\(\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
<=> \(\frac{x+1+9}{9}+\frac{x+2+8}{8}=\frac{x+3+7}{7}+\frac{x+4+6}{6}\)
<=>\(\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
<=> \(\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
<=> \(\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
<=> x+10=0
<=> x=-10
Vậy tập nghiệm của phương trình trên là S=\(\left\{-10\right\}\)
b. \(\frac{x+43}{57}+\frac{x+46}{54}=\frac{x+49}{51}+\frac{x+52}{48}\)
=> \(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)<=>\(\frac{x+43+57}{57}+\frac{x+46+54}{54}=\frac{x+49+51}{51}+\frac{x+52+48}{48}\)
<=>\(\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
<=>\(\frac{x+100}{57}+\frac{x+100}{54}-\frac{x+100}{51}-\frac{x+100}{48}=0\)
<=>(x+100)\(\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)\)=0
<=>x+100=0
<=>x= -100
Vậy tập nghiệm của phương trình trên là S=\(\left\{-100\right\}\)
\(B=\frac{\left(68-52\right)\left(68^2+68.52+52^2\right)}{16}+68.52=\frac{16\left(68^2+68.52+52^2\right)}{16}+68.52\)
\(B=68^2+2.68.52+52^2=\left(68+52\right)^2=120^2\)
Câu tiếp theo làm tương tự
a) Ta có: \(A=\dfrac{37^3+12^3}{49}-37\cdot12\)
\(=\dfrac{\left(37+12\right)\left(37^2-37\cdot12+12^2\right)}{49}-37\cdot12\)
\(=37^2-2\cdot37\cdot12+12^2\)
\(=\left(37-12\right)^2\)
\(=25^2=625\)
a: Ta có: \(A=\dfrac{35^3+13^3}{48}-35\cdot13\)
\(=35^2-35\cdot13+13^2-35\cdot13\)
\(=\left(35-13\right)^2\)
\(=22^2=484\)
b: Ta có: \(B=\dfrac{68^3-52^3}{16}+68\cdot52\)
\(=68^2+68\cdot52+52^2+68\cdot52\)
\(=\left(68+52\right)^2=14400\)
a) Ta có: A= \(\frac{35^3+13^3}{48}-35\cdot13\)=\(\frac{\left(35+13\right)\left(35^2-35\cdot13+13^2\right)}{48}-35\cdot13\)
=\(35^2-35\cdot13+13^2+35\cdot13\)=\(35^2+13^2=1394\)
b) Ta có: B=\(\frac{68^3-52^3}{16}+68\cdot52\)=\(\frac{\left(68-52\right)\left(68^2+68\cdot52+52^2\right)}{16}+68\cdot52\)
=\(68^2+2\cdot68\cdot52+52^2\)= \(\left(68+52\right)^2=120^2=14400\)
cho mk hỏi tại sao ở dòng thứ nhất là trừ 35.13 xong dưới lại là cộng
A=625
B=10000