Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4\frac{3}{5}-\left(\frac{5}{2}-2\right)+\frac{5}{4}\)
\(=\frac{23}{5}-\frac{5}{2}+2+\frac{5}{4}\)
\(=\frac{107}{20}\)
b) \(47,31-18,27-8,27+4,6\)
\(=25,37\)
\(G=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
\(3G=3+1+\frac{1}{3}+...+\frac{1}{3^4}\)
\(3G-G=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)
\(2G=3-\frac{1}{3^5}\)
\(2G=3-\frac{1}{243}\)
\(2G=\frac{729}{243}-\frac{1}{243}\)
\(G=\frac{728}{243}:2\)
\(G=\frac{364}{243}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{x.\left(x+1\right)}=\frac{6042}{2015}\)
\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{6042}{2015}\)
\(1-\frac{1}{x+1}=\frac{6042}{2015}:3\)
\(1-\frac{1}{x-1}=\frac{2014}{2015}\)
\(\frac{1}{x-1}=1-\frac{2014}{2015}\)
\(\frac{1}{x-1}=\frac{1}{2015}\)
\(\Rightarrow x-1=2015\)
\(\Rightarrow x=2016\)
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{81}{243}+\frac{27}{243}+\frac{9}{243}+\frac{3}{243}+\frac{1}{243}\)
\(=\frac{121}{243}\)
mk ko bít đúng hay ko nữa có gì mấy bạn góp ý cho mình nhé ! Thanks
A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A * 3= 3* ( 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
A* 3 = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A * 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729
A * 2 = 1 - 1/ 729
A * 2 = 1/728
A = 1/728 : 2
A = 2/728
Nếu không quy đồng Mẫu thì ta quy đồng Tử
P/S: 2/728 VÀ 1/2
1/2 = 1*2/ 2*2
= 2/4
So sánh 2/4 và 2/278 ta thấy phân số 2/4 lớn hơn.
Vậy 1/2 > A
Đ/S: A = 2/728
1/2 > A
\(A=\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}+\frac{1}{3x3x3x3x3x3}.\)
\(3xA=1+\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}\)
\(2xA=3xA-A=1-\frac{1}{3x3x3x3x3x3}\)
\(A=\frac{1}{2}-\frac{1}{3x3x3x3x3x3}< \frac{1}{2}\)
3/4 x 8/9 x 15/16 x ... x 99/100 x 120/121 = 3 x 8 x 15 x 99 x 120/ 4 x 9 x 16 x 100 x 121
= ( 1 x 3 ) x ( 2 x 4 ) x ( 3 x 5 ) x ... x ( 9 x 11 ) x ( 10 x 12 ) / ( 2 x 2 ) x ( 3 x 3 ) x ( 4 x 4 ) x ... x ( 10 x 10 ) x ( 11 x 11 )
= ( 1 x 2 x 3 x ... x 10 ) x ( 3 x 4 x 5 x ... x 12 ) / ( 2 x 3 x ... x 11 ) x ( 2 x 3 x ... x 11 ) = 12/11x2 = 6/11
\(\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{2014}\right)\)
A = \(\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x...x\frac{2012}{2013}x\frac{2013}{2014}\)
A = \(\frac{2x3x4x...x2012x2013}{3x4x5x...x2013x2014}\)
a = \(\frac{2}{2014}=\frac{1}{1007}\)
Đặt \(D=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)
\(\Leftrightarrow D=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}\)
\(\Leftrightarrow3D=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
\(\Leftrightarrow3D-D=2D=1-\frac{1}{3^6}\)
\(\Leftrightarrow D=\left(1-\frac{1}{3^6}\right)\div2\)
#)Giải :
Đặt \(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{5}-\frac{1}{10}\)
\(A=\frac{1}{10}\)
\(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\)
=\(\frac{3}{1.2}+\frac{3}{2.4}+\frac{3}{4.8}+\frac{3}{8.16}+\frac{3}{16.32}\)
=\(\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{4}+\frac{3}{4}-\frac{3}{8}+\frac{3}{8}-\frac{3}{16}+\frac{3}{16}-\frac{3}{36}\)
=\(\frac{3}{1}-\frac{3}{36}\)=\(\frac{35}{12}\)
a) Cho: \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\)
\(\Rightarrow3A-A=3-\frac{1}{81}\)
\(\Rightarrow A=\frac{3-\frac{1}{81}}{2}\)
\(A=\frac{121}{81}\)
b) \(37,52+4,7\times2,3-9,8\)
\(=37,52+10,81-9,8\)
\(=38,53\)
Chúc bn học tốt !!!!!