Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(A=\frac{3^{10}\cdot11+3^{10}\cdot5}{3^0\cdot2^4}\)
\(A=\frac{3^{10}\left(11+5\right)}{1\cdot16}\)
\(A=\frac{3^{10}\cdot16}{16}=3^{10}\)
b) Ta có:
\(B=\frac{2^{10}\cdot13+2^{10}\cdot65}{28\cdot104}\)
\(B=\frac{2^{10}\cdot13\cdot\left(1+5\right)}{2^2\cdot7\cdot2^3\cdot13}\)
\(B=\frac{2^{10}\cdot6\cdot13}{2^5\cdot7\cdot13}=\frac{2^{11}\cdot3\cdot13}{2^5\cdot7\cdot13}\)
\(B=\frac{2^6\cdot3}{7}=\frac{192}{7}\)
a) \(\frac{1}{9}\cdot3^4\cdot3^n=3^7\)
\(\Leftrightarrow\frac{1}{3^2}\cdot3^4\cdot3^n=3^7\)
\(\Leftrightarrow3^{n+2}=3^7\)
\(\Rightarrow n+2=7\)
\(\Rightarrow n=5\)
b) \(\left(2n+1\right)^3=343\)
\(\Leftrightarrow2n+1=7\)
\(\Leftrightarrow2n=6\)
\(\Rightarrow n=3\)
c) \(2\cdot16>2^n>4\)
\(\Leftrightarrow2^5>2^n>2^2\)
\(\Rightarrow5>n>2\)
d) \(n^{45}=n\)
\(\Leftrightarrow n^{45}-n=0\)
\(\Leftrightarrow n\left(n^{44}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n=0\\n^{44}-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=0\\n^{44}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=0\\n=\pm1\end{cases}}\)
e) \(\left(7n-11\right)^3=2^5\cdot5^2+200\)
\(\Leftrightarrow\left(7n-11\right)^3=1000\)
\(\Leftrightarrow7n-11=10\)
\(\Leftrightarrow7n=21\)
\(\Rightarrow n=3\)
\(A=\frac{11.9^{11}.3^7-27^{10}}{\left(2.3^{14}\right)^2}\)
\(A=\frac{11.3^{22}.3^7-3^{30}}{2^2.3^{28}}\)
\(A=\frac{11.3^{29}-3^{30}}{4.3^{28}}\)
\(A=\frac{3^{29}.\left(11-3\right)}{4.3^{28}}\)
\(A=\frac{3.8}{4}\)
\(A=\frac{24}{4}\)
\(A=6\)
vậy \(A=6\)
học tôt Ngô Thị Diệu Linh
a, \(\frac{25^{11}.4^{33}}{8^{15}.10^{22}}=\frac{\left(5^2\right)^{11}.\left(2^2\right)^{33}}{\left(2^3\right)^{15}.\left(2.5\right)^{22}}=\frac{5^{22}.2^{66}}{2^{45}.2^{22}.5^{22}}=\frac{5^{22}.2^{66}}{2^{67}.5^{22}}=\frac{1}{2}\)
b,\(\frac{8^4.5^8.9^3}{125^3.4^7.27}=\frac{\left(2^3\right)^4.5^8.\left(3^2\right)^3}{\left(5^3\right)^3.\left(2^2\right)^7.3^3}=\frac{2^{12}.5^8.3^6}{5^9.2^{14}.3^3}=\frac{3^3}{5.2^2}=\frac{27}{20}\)
Bạn làm nốt nhé cũng tương tự thôi !!!!!!!!!
4782969