Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1\cdot2+2\cdot3+3\cdot4+...+1000\cdot1001\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+1000\cdot1001\cdot\left(1002-999\right)\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+1000\cdot1001\cdot1002-999\cdot1000\cdot1001\)
\(3S=1000\cdot1001\cdot1002\Rightarrow S=\frac{1000\cdot1001\cdot1002}{3}=334.334.000\)
Mk ko chép lại đầu bài đâu,thông cảm nha mk chỉ biết giải ý B
3B=1.2.3+2.3.3+3.4.3+...+1000.1001.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+1000.1001.(1002-999)
=1.2.3-1.2.0+2.3.4-2.3.1+3.4.5-3.4.2+...+1000.1001.1002-1000.1001.999
=(1.2.3+2.3.4+3.4.5+...+1000.1001.1002) - (1.2.0+2.3.1+3.4.2+...+1000.1001.999)
=1000.1001.1002
=>B=(1000.1001.1002):3
=334 334 000
k hộ mk nha!
\(S_1=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{48\cdot49}+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
\(S_2=\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+....+\frac{1}{94\cdot97}+\frac{1}{97\cdot100}\)
\(3S_2=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+....+\frac{3}{94\cdot97}+\frac{3}{97\cdot100}\)
\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{97}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}\)
=> \(S_2=\frac{6}{25}:3=\frac{2}{25}\)
Ta có: \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2005.2006}\)
\(\Rightarrow N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}=\frac{2005}{2006}\)
\(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2015.2017}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
N = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2005 - 1/2006
= 1/1 - 1/2006
= 2006/2006 - 1/2006
= 2005/2006
tính giá trị của biểu thức
C= 5/1.2 + 5/2.3 + 5/3.4 +...+ 5/99.100
giải chi tiết giùm mình
cảm ơn nhìu
C=5/1.2+5/2.3+5/3.4+...+5/99.100
C=5.(1/1.2+1/2.3+1/3.4+...+1/99.100)
C=5.(1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100)
C=5.(1-1/100)
C=5.99/100
C=99/20
K cho mik nha các bạn
\(C=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\right)\)
\(=5.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=5.\left(1-\frac{1}{100}\right)\)
\(=5.\frac{99}{100}=\frac{495}{100}\)
B = 1.2+2.3 +.......+1000.1001
3B= 1.2.3+2.3.4+3.4.3 +...... + 1000.1001.3
3B= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... .+ 1000.1001.(1002 - 999)
3B = (1.2.3 + 2.3.4 + 3.4.5 +...... + 1000.1001.1002) - (0.1.2 + 1.2.3 + 2.3.4 +.......+999.1000.1001)
3B = 1000.1001.1002 - 0.1.2
3B =1003002000
B = 334334000
B = 1.2+2.3 +.......+1000.1001
3B= 1.2.3+2.3.4+3.4.3 +...... + 1000.1001.3
3B= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... .+ 1000.1001.(1002 - 999)
3B = (1.2.3 + 2.3.4 + 3.4.5 +...... + 1000.1001.1002) - (0.1.2 + 1.2.3 + 2.3.4 +.......+999.1000.1001)
3B = 1000.1001.1002 - 0.1.2
3B =1003002000
B = 334334000