Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 1.2+2.3 +.......+1000.1001
3B= 1.2.3+2.3.4+3.4.3 +...... + 1000.1001.3
3B= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... .+ 1000.1001.(1002 - 999)
3B = (1.2.3 + 2.3.4 + 3.4.5 +...... + 1000.1001.1002) - (0.1.2 + 1.2.3 + 2.3.4 +.......+999.1000.1001)
3B = 1000.1001.1002 - 0.1.2
3B =1003002000
B = 334334000
B = 1.2+2.3 +.......+1000.1001
3B= 1.2.3+2.3.4+3.4.3 +...... + 1000.1001.3
3B= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... .+ 1000.1001.(1002 - 999)
3B = (1.2.3 + 2.3.4 + 3.4.5 +...... + 1000.1001.1002) - (0.1.2 + 1.2.3 + 2.3.4 +.......+999.1000.1001)
3B = 1000.1001.1002 - 0.1.2
3B =1003002000
B = 334334000
Mk ko chép lại đầu bài đâu,thông cảm nha mk chỉ biết giải ý B
3B=1.2.3+2.3.3+3.4.3+...+1000.1001.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+1000.1001.(1002-999)
=1.2.3-1.2.0+2.3.4-2.3.1+3.4.5-3.4.2+...+1000.1001.1002-1000.1001.999
=(1.2.3+2.3.4+3.4.5+...+1000.1001.1002) - (1.2.0+2.3.1+3.4.2+...+1000.1001.999)
=1000.1001.1002
=>B=(1000.1001.1002):3
=334 334 000
k hộ mk nha!
\(A=\frac{1^2.2^2.3^2...1000^2}{1.2^2.3^2.4^2...1000^2.1001}=\frac{1}{1001}\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)
\(=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)
\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=9\left(1-\frac{1}{2020}\right)\)
\(=9.\frac{2019}{2020}\)
\(=\frac{18171}{2020}\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)
\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(A=9\left(1-\frac{1}{2020}\right)=\frac{9.2019}{2020}=\frac{18171}{2020}\)
...
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{100^2}{1000.1001}\)
\(A=\frac{1.1.2.2.3.3.....1000.1000}{1.2.2.3.3.4.....1000.1001}\)
\(A=\frac{\left(1.2.3.....1000\right).\left(1.2.3.....1000\right)}{\left(1.2.3.4....1000\right).\left(2.3.4.....1001\right)}\)
\(A=\frac{1}{1001}\)
Ta có A=\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{1000^2}{1000.1001}\)
=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{1000}{1001}\)
=\(\frac{1.2.3.....1000}{2.3.4.....1001}\)
=\(\frac{1}{1001}\)
Ta có : A = 1.2 + 2.3 + 3.4 + ..... + 49.50
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 49.50.51
=> 3A = 49.50.51
= >A = 49.50.51/3 = 41650
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}=\frac{99}{100}\)
=> 3A = 3 [ 1.2 + 2.3 + 3.4 + ... + (n-1).n ]
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 +... + 1001.1002.3
=> 3A = 1.2.3 + 2.3 . ( 4-1 ) +3.4.( 5-2 ) + ... + 1001.1002 ( 1003-1000 )
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 1001.1002 .1003 - 1000.1001.1002
=> 3A = 1001.1002.1003
=> A = 1001 . 1002 . 1003 : 3
=> A = ?
\(S=1\cdot2+2\cdot3+3\cdot4+...+1000\cdot1001\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+1000\cdot1001\cdot\left(1002-999\right)\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+1000\cdot1001\cdot1002-999\cdot1000\cdot1001\)
\(3S=1000\cdot1001\cdot1002\Rightarrow S=\frac{1000\cdot1001\cdot1002}{3}=334.334.000\)