Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (b=a+1)
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}-\frac{1}{a+1}\)
\(=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}=\frac{1}{ab}\)
k please!
1)a<b
2) ko có giá trị nào thỏa mãn yêu cầu đề bài
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)
\(\frac{1}{a}.\frac{1}{b}=\frac{1}{a}.\frac{1}{a+1}=\frac{1}{a\left(a+1\right)}\)
vậy \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}.\frac{1}{b}\)
\(\frac{1}{a}-\frac{1}{b}\) với b = a + 1
= \(\frac{b}{a.b}-\frac{a}{a.b}\)
= \(\frac{b-a}{a.b}\)
= \(\frac{a+1-a}{a.b}\)
= \(\frac{1}{a.b}\)
Vậy \(\frac{1}{a.b}=\frac{1}{a}-\frac{1}{b}\)
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
\(\frac{1}{a}-\frac{1}{b}=\frac{a-b}{ab}\)(1)
Vì b =a + 1=> a - b = -1 thay vào 1 ta có
\(\frac{a-b}{ab}=-\frac{1}{ab}\)
(+) a, b trái dấu => ab<0 => 1/ab< 0 ; -1/ab> 0
=> 1/ab<-1/ab hay 1/ab< 1/a - 1/b
(+) a, b cùng dấu => ab> 0 =>1/ab> 0 => - 1/ab<0
=>1/ab>-1/ab hay 1/ab > 1 /a -1/b
Với b=a+1.
Mà ta luôn có 1 công thức về lũy thừa là \(\frac{n}{a\cdot\left(a+n\right)}=\frac{1}{a}-\frac{1}{a+n}\)
Với trường hợp trên thì n là 1.
Vậy 2 vế trên bằng nhau.
Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}+\frac{a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}=\frac{1}{a.b}\)\(\frac{1}{a.b}\)
Nên \(\frac{1}{a.b}=\frac{1}{a}-\frac{1}{b}\)
Ta có: \(\frac{1}{A}-\frac{1}{B}=\frac{B}{AB}-\frac{A}{AB}=\frac{B-A}{AB}\)
Mà \(B=A+1\Rightarrow B-A=1\)
Như vậy : \(\frac{1}{A}-\frac{1}{B}=\frac{1}{AB}\)