\(B=1+\frac{1}{2\left(1+2\right)}+\frac{1}{3\left(1+2+3\right)}+\frac{1}{4\left(1+2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0
4 tháng 7 2017

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n}{n+1}\)

\(=\frac{1}{n+1}\)

\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)...+\frac{1}{20}.\left(1+2+3+...+20\right)\)

\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+\frac{1}{4}.4.5:2+...+\frac{1}{20}.20.21:2\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)

\(=\frac{2+3+4+5+...+21}{2}=115\)

5 tháng 3 2020

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)\)

\(+...+\frac{1}{20}\left(1+2+3+...+20\right)\)

\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}\)\(+...+\frac{1}{20}.\frac{20.21}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}\)

\(=\frac{\frac{\left(21+2\right)\left[\left(21-2\right)+1\right]}{2}}{2}=115\)

16 tháng 1 2019

\(\Rightarrow B=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+....+\frac{1}{20}.\frac{\left(1+20\right).20}{2}\)

\(\Rightarrow B=1+\frac{1}{2}.\frac{3.2}{2}+\frac{1}{3}.\frac{4.3}{2}+...+\frac{1}{20}.\frac{21.20}{2}\)

\(\Rightarrow B=1+\frac{1}{2}.3+\frac{4}{2}+...+\frac{21}{2}\)

\(\Rightarrow B=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}\)

\(\Rightarrow B=\frac{2+3+4+...+21}{2}=...\)

Good Clever

16 tháng 1 2019

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)

\(=1+\frac{1}{2}\cdot\frac{2\cdot3}{2}+\frac{1}{3}\cdot\frac{3\cdot4}{2}+...+\frac{1}{20}\cdot\frac{20\cdot21}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)

\(=\frac{1+2+3+....+21}{2}-\frac{1}{2}\)

\(=\frac{21\cdot22}{2}\cdot\frac{1}{2}-\frac{1}{2}\)

\(=\frac{1}{2}\left(\frac{21\cdot22}{2}-1\right)\)

\(=230\cdot\frac{1}{2}\)

29 tháng 12 2015

\(B=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+.....+\frac{1}{20}.\frac{20.21}{2}\)

\(B=\frac{2}{2}+\frac{2.3:2}{2}+\frac{3.4:3}{2}+.....+\frac{20.21:20}{2}\)

\(B=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+....+\frac{21}{2}\)

\(B=\frac{2+3+.....+21}{2}\)

\(B=\frac{\left(2+21\right).20}{2}:2=\frac{230}{2}:2=165:2=\frac{165}{2}\)

16 tháng 5 2017

Ta có: 1+2+3+...+n=\(\frac{n\left(n+1\right)}{2}\)

=> \(1=\frac{1x2}{2};\frac{1}{2}\left(1+2\right)=\frac{2x3}{2x2};\frac{1}{3}\left(1+2+3\right)=\frac{3x4}{2x3};\)\(;\frac{1}{4}\left(1+2+3+4\right)=\frac{4x5}{2x4};...;\frac{1}{20}\left(1+2+3+...+20\right)=\frac{20x21}{2x20}\)

=> \(B=\frac{1x2}{2}+\frac{2x3}{2x2}+\frac{3x4}{2x3}+\frac{4x5}{2x4}+...+\frac{20x21}{2x20}\)

=> \(B=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)

=> \(B=\frac{1}{2}\left(2+3+4+5+...+21\right)=\frac{1}{2}\left(\frac{21.22}{2}-1\right)\)

=> \(B=\frac{230}{2}=115\)

Đáp số: B=115