Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\frac{3^5}{27}=\frac{3^5}{3^3}=\frac{3^3.3^2}{3^3}=3^2=9\)
b ) \(\frac{4^7}{64}=\frac{4^7}{4^3}=\frac{4^3.4^4}{4^3}=4^4=256\)
c ) \(\frac{x^{13}}{x^5}=\frac{x^5.x^8}{x^5}=x^8\)
d ) \(\frac{x^{19}}{x^{18}}=\frac{x^{18}.x}{x^{18}}=x\)
e ) \(\frac{2.x^{10}}{x^7}=\frac{2.\left(x^7.x^3\right)}{x^7}=2.x^3\)
\(\left(2x^2-3\right)\left(3x^2-\dfrac{1}{0,12}\right)\left(x^2+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x^2-3=0\\3x^2-\dfrac{1}{0,12}=0\\x^2+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}2x^2=3\\3x^2=\dfrac{1}{0,12}\\x^2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x^2=3\Rightarrow x^2=1,5\\3x^2=\dfrac{1}{0,12}\Rightarrow x^2=\dfrac{25}{9}\\x^2=-1\Rightarrow x\in\varnothing\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{1,5}\\x=\pm\dfrac{5}{3}\end{matrix}\right.\)
Áp dụng công thức: (n-2)n(n+2) = n3 - 4n => n3 = (n-2).n.(n+2) + 4n
b18) Áp dụng: ta có: 23 = 4.2; 43 = 2.4.6 + 4.4 ; 63 = 4.6.8 + 4.6; ...; 1003 = 98.100.102 + 4.100
=> A = 4.2 + 2.4.6 + 4.4 + 4.6.8 + 4.6 +...+ 98.100.102 + 4.100
= (2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102 ) + 4.(2 + 4 + 6 + ...+ 100) = B + 4.C
Tính B = 2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102
=> 8.B = 2.4.6.8 + 4.6.8.8 + 6.8.10.8 +...+ 98.100.102.8
= 2.4.6.8 + 4.6.8 (10 - 2) + 6.8.10.(12 - 4) +...+ 98.100.102.(104 - 96)
= 2.4.6.8 + 4.6.8.10 - 2.4.6.8 + 6.8.10.12 - 4.6.8.10 +...+ 98.100.102.104 - 96.98.100.102
= (2.4.6.8 + 4.6.8.10 + 6.8.10.12 +...+ 98.100.102.104) - (2.4.6.8 + 4.6.8.10 +...+ 96.98.100.102)
= 98.100.102.104
=> B =98.100.102.104 : 8 = 12 994 800
C = 2+ 4+ 6 +..+100 = (2+100) . 50 : 2 = 2550
Vậy A = B +4C = 12 994 800 + 4. 2550 = 13 005 000
1^3+2^3+3^3+...+100^3
=1+8+27+....+10000
=9+91+910+...+910000
=1011110
Ta có; B= 3100-399+398-397+...+32-3+1
= (3100-399) + (398-397) + ... + (32-3) + 1
= 399 + 397 + ......... + 3 + 1
=> 3B = 3100 + 399 + 397 + ......... + 3
3B - B = 3100 - 1
=> B = \(\frac{3^{100}-1}{2}\)
-1.728728728
\(\left(-0,12\right)^3=\left(-\frac{12}{100}\right)^3=\left(-\frac{6}{50}\right)^3=\left(-\frac{3}{25}\right)^3=\left(-\frac{3^3}{25^3}\right)=-\frac{27}{15625}\)