Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=2\sqrt{5}+\frac{8}{1-\sqrt{5}}\)
\(=\frac{2\sqrt{5}-10+8}{1-\sqrt{5}}=\frac{-2\left(1-\sqrt{5}\right)}{1-\sqrt{5}}=-2\)
b/Đề sai
c/\(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\frac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}=\sqrt{2}\left(\frac{3+\sqrt{3}+3-\sqrt{3}}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\right)=\frac{6\sqrt{2}}{6}=\sqrt{2}\)
d/ \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}=\frac{9+4\sqrt{5}-8\sqrt{5}}{2\sqrt{5}-4}=\frac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}-2}{2}\)
\(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}}\)
\(A^2=8+2\sqrt{10+2\sqrt{5}+8-2\sqrt{10+2\sqrt{5}}+}2\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
\(A^2=16+2\left[64-4\left(10+2\sqrt{5}\right)\right]\)
\(A^2=16+128-8\left(10+2\sqrt{5}\right)\)
\(A^2=144-80-16\sqrt{5}\)
\(A^2=64-16\sqrt{5}\)
\(A^2=8+2\sqrt{10+2\sqrt{5}}+8-2.\sqrt{10+2\sqrt{5}}+2\sqrt{64-4\left(10+2\sqrt{5}\right)}\)
\(=16+2\sqrt{24-8\sqrt{5}}=16+2\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}+2^2}\)
\(=16+2\sqrt{\left(2\sqrt{5}-2\right)^2}=16+2\left(2\sqrt{5}-2\right)=12+4\sqrt{5}\)
\(=2+2.\sqrt{2}.\sqrt{10}+10\)
\(=\left(\sqrt{2}+\sqrt{10}\right)^2\)
=> \(A=\sqrt{2}+\sqrt{10}\)
a) \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)+8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= \(\frac{2\left(5-\sqrt{5}+\sqrt{10}-\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= -2
b); c); d) làm tương tự
Câu hỏi của Nguyen Phuc Duy - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo link này!
Đặt S = \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}\)+\(\sqrt{8-2\sqrt{10-2\sqrt{5}}}\)
S2 = 8 + 2\(\sqrt{10+2\sqrt{5}}\) + \(8-2\sqrt{10+2\sqrt{5}}\) + 2\(\times\)\(\sqrt{\left(8+2\sqrt{10+2\sqrt{5}}\right)\left(8-2\sqrt{10+2\sqrt{5}}\right)}\)
= 16 + \(2\sqrt{8^2-\left(2\sqrt{10+2\sqrt{5}}\right)^2}\)
= 16 + 2 \(\sqrt{64-40+8\sqrt{5}}\)
= 16 + 2\(\sqrt{20+2\times2\sqrt{5}\times2+4}\)
= 16 + 2\(\sqrt{\left(\sqrt{20}+2\right)^2}\)
= 16 + 2\(\sqrt{20}-4\)
= 12 + 2\(\sqrt{20}\)
Do S > 0 nên
S = \(\sqrt{12+2\sqrt{20}}\)= \(\sqrt{12+2\times2\sqrt{5}}\)=\(\sqrt{4\left(3+\sqrt{5}\right)}\)=\(2\sqrt{3+\sqrt{5}}\)
Vậy S = 2\(\sqrt{3+\sqrt{5}}\)
A = \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}-\sqrt{8-2\sqrt{10+2\sqrt{5}}}-\sqrt{2}-\sqrt{10}\)
Ta có : B = \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}-\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow B^2=16-2\sqrt{\left(8+2\sqrt{10+2\sqrt{5}}\right)\left(8-2\sqrt{10+2\sqrt{5}}\right)}\)
\(=16-2\sqrt{64-4\left(10+2\sqrt{5}\right)}\)
\(=16-2\sqrt{24-8\sqrt{5}}\)
\(=16-2\sqrt{\left(2\sqrt{5}-2\right)^2}=16-2\left(2\sqrt{5}-2\right)\)
\(=20-4\sqrt{5}\)
Vì \(8+2\sqrt{10+\sqrt{5}}>8-2\sqrt{10+2\sqrt{5}}\)
\(\Rightarrow B>0\)
\(\Rightarrow B=\sqrt{20-4\sqrt{5}}=2\sqrt{5-\sqrt{5}}\)
\(\Rightarrow A=B-\sqrt{2}-\sqrt{10}=2\sqrt{5-\sqrt{5}}-\sqrt{2}-\sqrt{10}=2\)