K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

\(T=\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+\dfrac{3}{9\cdot11}+...+\dfrac{3}{59\cdot61}\)

\(=\dfrac{3}{2}\cdot\left(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+...+\dfrac{2}{59\cdot61}\right)\)

\(=\dfrac{3}{2}\cdot\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

\(=\dfrac{3}{2}\cdot\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}\cdot\dfrac{56}{305}=\dfrac{84}{305}\)

14 tháng 3 2017

\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+\dfrac{3}{9.11}+...+\dfrac{3}{59.61}\)

\(=3.\left(\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+...+\dfrac{1}{59.61}\right)\)

\(=3.\dfrac{1}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+....+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

\(=\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)

\(=\dfrac{3}{2}.\dfrac{56}{305}\)

\(=\dfrac{84}{305}\)

13 tháng 8 2017

a) Sửa tí: \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)

Đặt \(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)

\(\Rightarrow2A=2.\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)

\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)

\(\Rightarrow2A-A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2006}}\right)\)

\(\Rightarrow A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}-1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2006}}\)

\(\Rightarrow A=2-\dfrac{1}{2^{2006}}\)

b) Đặt \(A=\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{1}{50.61}\)

\(A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{59}-\dfrac{1}{61}\)

\(A=\dfrac{1}{5}-\dfrac{1}{61}\)

\(A=\dfrac{56}{305}\)

c) Đặt \(A=\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\)

\(A=\dfrac{7}{2}.2.\left(\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{9999}\right)\)

\(A=\dfrac{7}{2}.\left(1-\dfrac{1}{101}\right)\)

\(A=\dfrac{7}{2}.\dfrac{100}{101}\)

\(A=\dfrac{256}{101}\)

20 tháng 3 2017

\(\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+...+\dfrac{3}{59\cdot61}\)

\(=3\left(\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}+...+\dfrac{1}{59\cdot61}\right)\)

\(=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\) \(=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}\cdot\dfrac{56}{305}=\dfrac{84}{305}\)

20 tháng 3 2017

A=\(\dfrac{3}{5.7}\)+\(\dfrac{3}{7.9}\)+...+\(\dfrac{3}{59.61}\)

A=\(\dfrac{3}{2}\)(\(\dfrac{2}{5.7}\)+\(\dfrac{2}{7.9}\)+...+\(\dfrac{2}{59.61}\))

A=\(\dfrac{3}{2}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{9}\)+..+\(\dfrac{1}{59}\)-\(\dfrac{1}{61}\))

A=\(\dfrac{3}{2}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{61}\))

A=\(\dfrac{3}{2}\)(\(\dfrac{61-5}{5.61}\))

A=\(\dfrac{3}{2}\).\(\dfrac{56}{305}\)

A=\(\dfrac{84}{305}\)

leuleuok

10 tháng 5 2018

A=3/4.(1/5.7+1/7.9+....+1/59.61)

A=3/4.(1/5-1/7+1/7-1/9+...+1/59-1/61)

A=3/4.(1/5-1/61)

A=3/4.56/305

A=42/305

mình làm cho bạn phần A thôi nhé còn phần B mình chưa nghĩ ra cách làm ahihi!

HQ
Hà Quang Minh
Giáo viên
2 tháng 8 2023

Em nhớ nhân 1/2 trong tất cả dấu bằng thì biểu thức này mới không thay đổi kết quả nhé.

2 tháng 8 2023

`11/(5.7) + 11/(7.9) + 11/(9.11) + ... + 11/(59.61)`

`= 2.(11/(5.7) + 11/(7.9) + ... + 11/(59.61))`

`= 11.(2/(5.7) + 2/(7.9) + ... + 2/(59.61))`

`= 11.(1/5 - 1/7 + 1/7 - 1/9 + ... +1/59 - 1/61)`

`= 11.(1/5 - 1/61)`

`= 11.56/305`

`= 616/305`

17 tháng 4 2017

b,=1/5-1/7+1/7-1/9+...+1/59-1/61

=1/5-1/61

=54/115

27 tháng 3 2017

Theo quy luật thì mình nghĩ đáng lẽ \(\dfrac{4}{5.9}\)phải là\(\dfrac{4}{7.9}\)Bạn có chép sai đề ko?

27 tháng 3 2017

A=1-\(\dfrac{4}{5.7}-\dfrac{4}{7.9}-\dfrac{4}{9.11}...-\dfrac{4}{59.61}\)

A=\(1-\left(\dfrac{4}{5.7}+\dfrac{4}{7.9}+\dfrac{4}{9.11}+...+\dfrac{4}{59.61}\right)\)

Đặt B=\(\dfrac{4}{5.7}+\dfrac{4}{7.9}+\dfrac{4}{9.11}+...+\dfrac{4}{59.61}\)

B=\(2\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{2}{59.61}\right)\)
B=\(2\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
B=\(2\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=2.\dfrac{56}{305}\)
B=\(\dfrac{112}{305}\)
\(\Rightarrow A=1-\dfrac{112}{305}=\dfrac{193}{305}\)