Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{-3^4\cdot2^8}{2^2\cdot2^2\cdot3^2}=-3^2\cdot2^2=-6^2=-36\)
b: \(=\dfrac{3^6\cdot2^{15}}{3^6\cdot2^6\cdot2^{15}}=\dfrac{1}{2^6}=\dfrac{1}{64}\)
c: \(=\left(\dfrac{0.8}{0.4}\right)^5\cdot\dfrac{1}{0.4}=2^5\cdot\dfrac{1}{0.4}=\dfrac{32}{0.4}=80\)
\(\frac{27^2.8^5}{6^6.32^3}=\frac{\left(3^3\right)^2.\left(2^3\right)^5}{\left(2.3\right)^6.\left(2^5\right)^3}=\frac{3^6.2^{15}}{2^6.3^6.2^{15}}=\frac{1}{2^6}=\frac{1}{64}\)
1. Tìm n, biết:
a) \(\dfrac{-32}{\left(-2\right)^n}=4\)
\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)
\(\Rightarrow\left(-2\right)^n.\left(-2\right)^2=\left(-2\right)^5\)
(-2)n + 2 = (-2)5
n + 2 = 5
n = 5 - 2
n = 3.
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow\dfrac{2^3}{2^n}=2\)
\(\Rightarrow\) 2n . 2 = 23
n + 1 = 3
n = 3 - 1
n = 2.
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
2n - 1 = 3
2n = 3 + 1
2n = 4
n = 4 : 2
n = 2.
2. Tính:
a) \(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{4}\right)^2\)
\(=\left(\dfrac{1}{2}\right)^3.\left[\left(\dfrac{1}{2}\right)^2\right]^2\)
\(=\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{2}\right)^4\)
\(=\left(\dfrac{1}{2}\right)^7\)
\(=\dfrac{1}{128}\)
b) 273 : 93
= (33)3 : (32)3
= 39 : 36
= 33
= 27
c) 1252 : 253
= (53)2 : (52)3
= 56 : 56
= 1
d) \(\dfrac{27^2.8^5}{6^6.32^3}\)
\(=\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{6^6.\left(2^5\right)^3}\)
\(=\dfrac{3^6.2^{15}}{6^6.2^{15}}\)
\(=\dfrac{3^6}{6^6}\)
\(=\dfrac{1}{64}.\)
B2 :
b) 27\(^3\): 9\(^3\)= (27:9)\(^3\)= 3\(^3\)
c) 125\(^2\): 25\(^3\)= 15625 : 15625 = 1
\(\frac{2^5,9^3}{27^2.8^2}\)
\(=\frac{2^5.3^5}{3^5.2^5}\)
\(=\frac{1}{1}\)
\(=1\)
\(A=\dfrac{3}{1^2.2^2}+\dfrac{7}{3^2.4^2}+\dfrac{11}{5^2.6^2}+\dfrac{15}{7^2.8^2}+\dfrac{19}{9^2.10^2}\)
\(A=\dfrac{1+2}{1^2.2^2}+\dfrac{3+4}{3^2.4^2}+\dfrac{5+6}{5^2.6^2}+\dfrac{7+8}{7^2.8^2}+\dfrac{9+10}{9^2.10^2}\)
\(A=\dfrac{1}{1.2^2}+\dfrac{1}{1^2.2}+\dfrac{1}{3.4^2}+\dfrac{1}{3^2.4}+\dfrac{1}{5.6^2}+\dfrac{1}{5^2.6}+...+\dfrac{1}{9^2.10}\)
\(A=\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{48}+\dfrac{1}{36}+\dfrac{1}{180}+\dfrac{1}{150}+....+\dfrac{1}{900}\)
\(\left\{{}\begin{matrix}\dfrac{1}{48}< \dfrac{3}{32}\\\dfrac{1}{36}< \dfrac{1}{32}\\........\\\dfrac{1}{900}< \dfrac{1}{32}\end{matrix}\right.\)
Nên \(A< \dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{32}.8=1\)
\(\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{2^6.3^6.\left(2^4\right)^3}=\dfrac{3^6.2^{15}}{2^{18}.3^6}=\dfrac{1}{2^{13}}=2^{-13}\)