K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Đặt :

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+........+\dfrac{1}{19.21}\)

\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+..........+\dfrac{2}{19.21}\)

\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+.........+\dfrac{1}{19}-\dfrac{1}{21}\)

\(\Leftrightarrow2A=1-\dfrac{1}{21}\)

\(\Leftrightarrow2A=\dfrac{20}{21}\)

\(\Leftrightarrow A=\dfrac{10}{21}\)

21 tháng 12 2017

Đặt A =

\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{19\cdot21}\\ \Rightarrow2A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{19\cdot21}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{21}\\ =1-\dfrac{1}{21}=\dfrac{20}{21}\\ \Rightarrow A=\dfrac{20}{21}:2=\dfrac{10}{21}\)

5 tháng 6 2018

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{8}{17}\)

\(\Rightarrow\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}\right)=\dfrac{8}{17}\)

\(\Rightarrow\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{8}{17}\)

\(\Rightarrow\dfrac{1}{2}\left(1-\dfrac{1}{x+2}\right)=\dfrac{8}{17}\)

\(\Rightarrow1-\dfrac{1}{x+2}=\dfrac{8}{17}:\dfrac{1}{2}=\dfrac{16}{17}\)

\(\Rightarrow\dfrac{1}{x+2}=1-\dfrac{16}{17}=\dfrac{1}{17}\)

\(\Rightarrow x+2=17\rightarrow x=15\)

Vậy x = 15

6 tháng 6 2018

1/2 nhan voi b/thuc tren bi sai roi

3 tháng 3 2018

\(S=\dfrac{1}{1.3}-\dfrac{1}{2.4}+\dfrac{1}{3.5}-\dfrac{1}{4.6}+\dfrac{1}{5.7}-\dfrac{1}{6.8}+\dfrac{1}{7.9}-\dfrac{1}{8.10}\)

\(S=\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}\right)-\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}\right)\)

\(S=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{9}\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{10}\right)\)

\(S=\dfrac{1}{2}-\dfrac{1}{18}-\dfrac{1}{4}+\dfrac{1}{20}\)

\(S=.C.A.S.I.O.\)

22 tháng 12 2017

5a.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)

b.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)

14 tháng 8 2017

\(\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+\left|x+\dfrac{1}{5.7}\right|+...+\left|x+\dfrac{1}{99.101}\right|=100x\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{1}{1.3}\right|\ge0\\\left|x+\dfrac{1}{3.5}\right|\ge0\\\left|x+\dfrac{1}{99.101}\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+\left|x+\dfrac{1}{5.7}\right|+...+ \left|x+\dfrac{1}{99.101}\right|\ge0\)\(\Rightarrow100x\ge0\)

\(\Rightarrow x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+x+\dfrac{1}{5.7}+...+x+\dfrac{1}{99.101}=100x\)\(\Rightarrow50x+\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}=100x\)

\(\Rightarrow50x+\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=100x\)

\(\Rightarrow50x+\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=100x\)

\(\Rightarrow50x+\dfrac{50}{101}=500x\)

\(\Rightarrow50x=\dfrac{50}{101}\)

\(\Rightarrow x=\dfrac{1}{101}\)

15 tháng 8 2017

lập lueenaj chút đê nhok

17 tháng 8 2018

a, \(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)

\(\Leftrightarrow\dfrac{1}{2}.\left(1-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)

\(\Leftrightarrow\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\)

\(\Leftrightarrow98\left(2x+1\right)=99.2x\)

\(\Leftrightarrow2x=98\Rightarrow x=49\)

b: Đặt \(A=1-3+3^2-3^3+...+\left(-3\right)^x\)

\(=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^x\)

\(\Leftrightarrow-3A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{x+1}\)

\(\Leftrightarrow-3A-A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{x+1}-...-1\)

\(\Leftrightarrow-4A=\left(-3\right)^{x+1}-1\)

\(\Leftrightarrow A=\dfrac{\left(-3\right)^{x+1}-1}{-4}=\dfrac{-\left(-3\right)^{x+1}+1}{4}\)

\(\Leftrightarrow\dfrac{-\left(-3\right)^{x+1}+1}{4}=\dfrac{3^{2012}-1}{2}\)

\(\Leftrightarrow-\left(-3\right)^{x+1}+1=2\cdot3^{2012}-2\)

\(\Leftrightarrow-\left(-3\right)^{x+1}=2\cdot3^{2012}-3\)

\(\Leftrightarrow-\left(-3\right)^{x+1}=3\left(2\cdot3^{2011}-1\right)\)

\(\Leftrightarrow-\left(-3\right)^x=2\cdot3^{2011}-1\)

=>x=2010

5 tháng 8 2017

\(A=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{99}{100}\)

\(\Leftrightarrow A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}.....\dfrac{9.11}{10.10}\)

\(=\dfrac{1.3.2.4.3.5.4.6....9.11}{2.2.3.3.4.4.5.5.....10.10}\)

\(=\dfrac{\left(1.2.3.4.5....9\right).\left(2.3.4.5.6.....11\right)}{\left(2.3.4.5.6.....10\right)\left(2.3.4.5.6.....10\right)}\)

\(=\dfrac{11}{10}\)

5 tháng 8 2017

còn phần a thì sao bn?bucminh

14 tháng 8 2017

có ai giúp đc mik k