\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2022

\(=\dfrac{2}{1}+\dfrac{3}{2}+\dfrac{4}{3}=\dfrac{2.6+3.3+4.2}{6}=\dfrac{12+9+8}{6}=\dfrac{29}{6}\)

19 tháng 9 2022

=1/2+1/6+1/12=6/12+2/12+1/12=9/12=3/4 đơn giản mà nhân vô xong quy đồng là đ/c

2 tháng 3 2017

Ta có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}\)

\(\Rightarrow A=\dfrac{49}{50}\)

Vậy \(A=\dfrac{49}{50}.\)

2 tháng 3 2017

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=1-\dfrac{1}{50}=\dfrac{49}{50}\)

26 tháng 7 2017

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

26 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)

19 tháng 6 2018

Theo để ra ta có

\(-S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)

\(\Rightarrow-S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\Rightarrow-S=1-\dfrac{1}{n}=\dfrac{n-1}{n}\)

\(\Rightarrow S=\dfrac{1-n}{n}\)

4 tháng 7 2018

Ta có:

\(S=\dfrac{-1}{1.2}-\dfrac{1}{2.3}-\dfrac{1}{3.4}-...-\dfrac{1}{\left(n-1\right)n}\\ S=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\right)\\ S=-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\\ S=-\left(1-\dfrac{1}{n}\right)\\ S=-\dfrac{n-1}{n}\)

Vậy \(S=-\dfrac{n-1}{n}\)

24 tháng 8 2017

Bạn có ghi thiếu đề không vậy?

5 tháng 9 2017

ko

16 tháng 3 2017

Ta có: \(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}...\dfrac{10^2}{10.11}\)

\(=\dfrac{2.2.3.3...10.10}{2.2.3.3.4...10.11}\)

\(=\dfrac{1}{11}\)

Vậy tích trên có giá trị \(=11.\)

AH
Akai Haruma
Giáo viên
3 tháng 12 2017

Lời giải:

Ta có:

\(\frac{1}{1.2^2}=\frac{1}{2^2}\)

\(2.3^2>3^2\Rightarrow \frac{1}{2.3^2}< \frac{1}{3^2}\)

\(3.4^2> 4^2\Rightarrow \frac{1}{3.4^2}< \frac{1}{4^2}\)

...........

\(49.50^2> 50^2\Rightarrow \frac{1}{49.50^2}< \frac{1}{50^2}\)

Cộng theo từng vế các BĐT:

\(\Rightarrow \frac{1}{1.2^2}+\frac{1}{2.3^2}+\frac{1}{3.4^2}+....+\frac{1}{49.50^2}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}\)

\(\Leftrightarrow A< B\)

Vậy ta có đpcm.

13 tháng 11 2017

1.

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}-\dfrac{1}{4!}+...+\)\(\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

13 tháng 11 2017

2.

\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\)\(\dfrac{1}{100!}\)

Ta có:

\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+\dfrac{3.4}{4!}-\dfrac{1}{4!}+...+\)\(\dfrac{99.100}{100!}-\dfrac{1}{100}\)

\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+\dfrac{3.4}{4!}+...+\dfrac{99.100}{100!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)

24 tháng 3 2017

Ta thấy:

\(1\cdot2^2=2^2;2\cdot3^2>3^2;3\cdot4^2>4^2;...;49\cdot50^2>50^2\)

\(\Rightarrow\dfrac{1}{1.2^2}=\dfrac{1}{2^2};\dfrac{1}{2\cdot3^2}< \dfrac{1}{3^2};\dfrac{1}{3\cdot4^2}< \dfrac{1}{4^2};...;\dfrac{1}{49\cdot50^2}< \dfrac{1}{50^2}\)

\(\Rightarrow\dfrac{1}{1\cdot2^2}+\dfrac{1}{2\cdot3^2}+\dfrac{1}{3\cdot4^2}+...+\dfrac{1}{49\cdot50^2}< \dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

hay A<B

Vậy A<B

28 tháng 6 2017

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{9.10}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(A=1-\dfrac{1}{10}=\dfrac{9}{10}\)

\(B=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(B=\dfrac{1}{100}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-.....+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\)\(B=0-1=-1\)

29 tháng 6 2017

cám ơn bn

3 tháng 4 2017

Ta có:

\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+...+\dfrac{99.100-1}{100!}\)

\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+...+\dfrac{99.100}{100!}-\dfrac{1}{100!}\)

\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+...+\dfrac{99.100}{100!}\right)-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=1+1-\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)

Vậy \(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+...+\dfrac{99.100-1}{100!}< 2\) (Đpcm)