Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)
\(=-2x^4y^3+4x^3y^4-10x^2y^5\)
b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)
\(=-2x^4+6x^3+2x^2-2x\)
c) Ta có: \(3x^2\left(2x^3-x+5\right)\)
\(=6x^5-3x^3+15x^2\)
d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)
\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)
e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)
\(=-4x^3y^2+8x^2y^2-12x^2y\)
f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)
\(=4x^3y^2+3x^2y^2-5x^3y\)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
1.
a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)
\(\dfrac{1}{3}x^6y^5z\)
Deg=12
\(a.M+(5x^2-2xy)=6x^2+9xy-y^2
\)
\(M=(6x^2+9xy-y^2)-(5x^2-2xy)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=(6x^2-5x^2)+(9xy+2xy)-y^2\)
\(M=x^2+11xy-y^2\)
Vậy \(M=x^2+11xy-y^2\)
\(b.M+(3x^2y-2xy^3)=2x^2y-4xy^3\)
\(M=(2x^2y-4xy^3)-(3x^2-2xy^3)\)
\(M=
\) \(2x^2-4xy^3-3x^2+2xy^3\)
\(M=(2x^2-3x^2)+(-4xy^3+2xy^3)\)
\(M=-x^2-2xy^3\)
Vậy \(M=-x^2-2xy^3\)
a) M + (5x\(^2\) - 2xy) = 6x\(^2\) + 9xy - y\(^2\)
=> M = (6x\(^2\) + 9xy - y\(^2\)) - (5x\(^2\) - 2xy)
M = 6x\(^2\) + 9xy - y\(^2\) - 5x\(^2\) + 2xy
M = (6x\(^2\) - 5x\(^2\)) + (9xy + 2xy) - y\(^2\)
M = 1x\(^2\) + 11xy - y\(^2\)
1) a) \(\left|7x-5y\right|+\left|2z-3y\right|+\left|xy+yz+xz-2000\right|\ge0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}7x=5y\\2z=3y\\xy+yz+xz=2000\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}y\\z=\dfrac{3}{2}y\\xy+yz+xz=2000\end{matrix}\right.\)
Ta có: \(xy+yz+xz=2000\)
\(\Rightarrow\dfrac{5}{7}y^2+\dfrac{3}{2}y^2+\dfrac{15}{14}y^2=2000\)
\(\Rightarrow y^2\left(\dfrac{5}{7}+\dfrac{3}{2}+\dfrac{15}{14}\right)=2000\Leftrightarrow\dfrac{23}{7}y^2=2000\)
Tìm \(y\) và suy ra \(x;z\) là được,Bài này nghiệm khá xấu
b) \(\left|3x-7\right|+\left|3x+2\right|+8=\left|7-3x\right|+\left|3x+2\right|+8\ge\left|7-3x+3x+2\right|+8\ge9+8=17\)Dấu "=" xảy ra khi: \(-\dfrac{3}{2}\le x\le\dfrac{7}{3}\)
2) a)Ta có: \(\left\{{}\begin{matrix}\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\\\dfrac{12}{\left|y+1\right|+3}\le\dfrac{12}{3}=4\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
\(\Rightarrow\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}=4\)
\(\Rightarrow\left\{{}\begin{matrix}1\le x\le5\\y=-1\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}\left|y+3\right|+5\ge5\\\dfrac{10}{\left(2x-6\right)^2+2}\le\dfrac{10}{2}=5\end{matrix}\right.\)
Mà theo đề bài: \(\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}\)
\(\Rightarrow\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}y=-3\\x=3\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\\\dfrac{6}{\left|y+3\right|+3}\le\dfrac{6}{3}=2\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}\)
\(\Rightarrow\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}=2\)
\(\Rightarrow\left\{{}\begin{matrix}1\le x\le3\\y=-3\end{matrix}\right.\)
T giải thử thôi nhé :w
a) \(1\frac{1}{4}x^2y\left(\frac{-5}{6}xy\right)^0.\left(-2\frac{1}{3}xy\right)\)
\(=\frac{5}{4}x^2y\left(\frac{-5}{6}xy\right)^0.\left(-\frac{5}{2}xy\right)\)
\(=1.\frac{5}{4}x^2y\left(-\frac{5}{2}xy\right)\)
\(=-\frac{5}{4}x^2y.1.\frac{5}{2}xy\)
\(=-1.\frac{5}{4}.\frac{5}{2}x^3y^2\)
\(=-1.\frac{25x^3y^2}{8}\)
\(=-\frac{25x^3y^2}{8}\)
a: \(=\dfrac{2}{5}x^2y^2-2x^2y+4xy^2\)
b: \(=x^2y^2+5xy-xy-5=x^2y^2+4xy-5\)
c: \(=-10x^5+5x^3-2x^2\)
d: \(=x^3-2x^2y+3x^2y-6xy^2=x^3+x^2y-6xy^2\)