Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)
b, Ta có :
\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)
c, Ta có :
\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)
\(B=\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)
\(B=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+....+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)
\(B=1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{3}{2014}+1\right)+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)\)
\(B=\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+....+\dfrac{2017}{2014}+\dfrac{2017}{2015}+\dfrac{2017}{2016}\)
\(B=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
\(\dfrac{B}{A}=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}=2017\)
\(\dfrac{B}{A}=\dfrac{\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\left(\dfrac{2015}{2}+\dfrac{2}{2}\right)+\left(\dfrac{2014}{3}+\dfrac{3}{3}\right)+...+\left(\dfrac{1}{2016}+\dfrac{2016}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)
Vậy \(\dfrac{B}{A}=2017\)
\(linh=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+\dfrac{4}{5^4}+....+\dfrac{100}{5^{100}}\)
\(5linh=5\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+\dfrac{4}{5^4}+...+\dfrac{100}{5^{100}}\right)\)
\(5linh=1+\dfrac{2}{5}+\dfrac{3}{5^2}+\dfrac{4}{5^3}+...+\dfrac{100}{5^{99}}\)
\(5linh-linh=\left(1+\dfrac{2}{5}+\dfrac{3}{5^2}+\dfrac{4}{5^3}+...+\dfrac{100}{5^{99}}\right)-\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+\dfrac{4}{5^4}+...+\dfrac{100}{5^{100}}\right)\)
\(4linh=1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}-\dfrac{100}{5^{100}}\)
Đặt:
\(linh_2=1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{99}}\)
\(5linh_2=5\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{99}}\right)\)
\(5linh_2=5+1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}\)
\(5linh_2-linh_2=\left(5+1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}\right)-\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\right)\)
\(4linh_2=5-\dfrac{1}{5^{99}}\)
\(linh=\dfrac{5}{4}-\dfrac{1}{5^{99}.4}\)
Nên \(4linh=\dfrac{5}{4}-\dfrac{1}{5^{99}.4}-\dfrac{100}{5^{100}}\)
Khi đó \(linh=\dfrac{5}{16}-\dfrac{1}{5^{99}.16}-\dfrac{100}{5^{100}.4}\)
Bài này bn dùng tính tổng xích ma trên máy tính:
\(\sum\limits^{100}_{x=1}\left(\dfrac{X}{5^X}\right)\)
Kết quả: 5/16
\(\dfrac{x}{2^2}+\dfrac{x}{2^3}+\dfrac{x}{2^4}=\dfrac{x}{3^2}+\dfrac{x}{3^3}+\dfrac{x}{3^4}\)
\(\Leftrightarrow\dfrac{x}{2^2}+\dfrac{x}{2^3}+\dfrac{x}{2^4}-\dfrac{x}{3^2}-\dfrac{x}{3^3}-\dfrac{x}{3^4}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-\dfrac{1}{3^4}\right)=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)
\(A=2A-A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{100}}\)\(\Rightarrow A=1-\dfrac{1}{2^{100}}\)
T làm biếng lắm; làm C thôi
\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ \Rightarrow A< \dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\\ \Rightarrow A^2< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\right)\\ =\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{99}{100}.\dfrac{100}{101}\\ =\dfrac{1}{101}< \dfrac{1}{100}\\ \Rightarrow A< \dfrac{1}{10}\)
Làm tương tự ta được A > 1/15
câu a
\(A=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{30}>\dfrac{20}{30}=\dfrac{2}{3}>\dfrac{1}{3}\)
\(A=\left(\dfrac{1}{11}+..+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+...+\dfrac{1}{30}\right)< 5.\dfrac{1}{10}+25.\dfrac{1}{15}=\dfrac{1}{2}+\dfrac{5}{3}=\dfrac{8}{6}=\dfrac{4}{3}< \dfrac{5}{2}\)
\(\dfrac{11}{12}-\left(\dfrac{2}{5}-\dfrac{3}{4}x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}-\dfrac{3}{4}x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}-\dfrac{3}{4}x=\dfrac{1}{4}\)
\(\dfrac{3}{4}x=\dfrac{2}{5}-\dfrac{1}{4}\)
\(\dfrac{3}{4}x=\dfrac{3}{20}\)
\(x=\dfrac{3}{20}:\dfrac{3}{4}\)
=> \(x=\dfrac{1}{5}\)
\(\dfrac{11}{12}\)- (\(\dfrac{2}{5}-\dfrac{3}{4}\)x ) = \(\dfrac{2}{3}\)
\(\dfrac{2}{5}-\dfrac{3}{4}\)x = \(\dfrac{11}{12}\)- \(\dfrac{2}{3}\)
\(\dfrac{2}{5}-\dfrac{3}{4}\)x = \(\dfrac{1}{4}\)
\(\dfrac{3}{4}\)x = \(\dfrac{2}{5}\)- \(\dfrac{1}{4}\)
\(\dfrac{3}{4}\)x = \(\dfrac{3}{20}\)
x = \(\dfrac{3}{20}\): \(\dfrac{3}{4}\)
x= \(\dfrac{1}{5}\)
a) \(P=\frac{1+2}{1^2.2^2}+\frac{2+3}{2^2.3^2}+...+\frac{9+10}{9^2.10^2}\)
\(P=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\) ( rút gọn số mũ nhé )
\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\)
\(P=1-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
Vì \(\frac{9}{10}< 1\Rightarrow P< 1\) (đpcm)
b) Chút nữa mình làm nhé ^^
b)
\(Q=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
Ta so sánh giữa A và Q.
\(\frac{1}{1.2}>\frac{1}{3};\frac{1}{2.3}>\frac{1}{3^2};\frac{1}{3.4}>\frac{1}{3^3};....;\frac{1}{100.101}>\frac{1}{3^{100}}\)
\(\Rightarrow Q< A\)
Ta lại tiếp tục so sánh A và \(\frac{1}{2}\)
Ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\Leftrightarrow A< \frac{1}{2}\)
Ta được:
\(Q< A< \frac{1}{2}\Leftrightarrow Q< \frac{1}{2}\)
a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)
\(\Rightarrowđpcm\)
d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)
\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)
\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)
\(\Rightarrowđpcm\)
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
\(\Rightarrowđpcm\)