K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)

b, Ta có :

\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)

c, Ta có :

\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)

6 tháng 10 2018

Mình làm rồi đó !!!!!Trần Thị Hương Lan

14 tháng 12 2017

\(B=\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)

\(B=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+....+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)

\(B=1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{3}{2014}+1\right)+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)\)

\(B=\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+....+\dfrac{2017}{2014}+\dfrac{2017}{2015}+\dfrac{2017}{2016}\)

\(B=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)

\(\dfrac{B}{A}=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}=2017\)

14 tháng 12 2017

\(\dfrac{B}{A}=\dfrac{\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\left(\dfrac{2015}{2}+\dfrac{2}{2}\right)+\left(\dfrac{2014}{3}+\dfrac{3}{3}\right)+...+\left(\dfrac{1}{2016}+\dfrac{2016}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

Vậy \(\dfrac{B}{A}=2017\)

3 tháng 10 2017

\(linh=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+\dfrac{4}{5^4}+....+\dfrac{100}{5^{100}}\)

\(5linh=5\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+\dfrac{4}{5^4}+...+\dfrac{100}{5^{100}}\right)\)

\(5linh=1+\dfrac{2}{5}+\dfrac{3}{5^2}+\dfrac{4}{5^3}+...+\dfrac{100}{5^{99}}\)

\(5linh-linh=\left(1+\dfrac{2}{5}+\dfrac{3}{5^2}+\dfrac{4}{5^3}+...+\dfrac{100}{5^{99}}\right)-\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+\dfrac{4}{5^4}+...+\dfrac{100}{5^{100}}\right)\)

\(4linh=1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}-\dfrac{100}{5^{100}}\)

Đặt:

\(linh_2=1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{99}}\)

\(5linh_2=5\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{99}}\right)\)

\(5linh_2=5+1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}\)

\(5linh_2-linh_2=\left(5+1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}\right)-\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\right)\)

\(4linh_2=5-\dfrac{1}{5^{99}}\)

\(linh=\dfrac{5}{4}-\dfrac{1}{5^{99}.4}\)

Nên \(4linh=\dfrac{5}{4}-\dfrac{1}{5^{99}.4}-\dfrac{100}{5^{100}}\)

Khi đó \(linh=\dfrac{5}{16}-\dfrac{1}{5^{99}.16}-\dfrac{100}{5^{100}.4}\)

3 tháng 10 2017

Bài này bn dùng tính tổng xích ma trên máy tính:

\(\sum\limits^{100}_{x=1}\left(\dfrac{X}{5^X}\right)\)

Kết quả: 5/16

29 tháng 6 2017

\(\dfrac{x}{2^2}+\dfrac{x}{2^3}+\dfrac{x}{2^4}=\dfrac{x}{3^2}+\dfrac{x}{3^3}+\dfrac{x}{3^4}\)

\(\Leftrightarrow\dfrac{x}{2^2}+\dfrac{x}{2^3}+\dfrac{x}{2^4}-\dfrac{x}{3^2}-\dfrac{x}{3^3}-\dfrac{x}{3^4}=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-\dfrac{1}{3^4}\right)=0\)

\(\Leftrightarrow x=0\)

Vậy x = 0

29 tháng 6 2017

\(x=0\)

6 tháng 8 2017

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)

\(A=2A-A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{100}}\)\(\Rightarrow A=1-\dfrac{1}{2^{100}}\)

6 tháng 8 2017

bn cs bt lm câu b k Nguyên

7 tháng 3 2018

T làm biếng lắm; làm C thôi

\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ \Rightarrow A< \dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\\ \Rightarrow A^2< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\right)\\ =\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{99}{100}.\dfrac{100}{101}\\ =\dfrac{1}{101}< \dfrac{1}{100}\\ \Rightarrow A< \dfrac{1}{10}\)

Làm tương tự ta được A > 1/15

9 tháng 3 2018

câu a

\(A=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{30}>\dfrac{20}{30}=\dfrac{2}{3}>\dfrac{1}{3}\)

\(A=\left(\dfrac{1}{11}+..+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+...+\dfrac{1}{30}\right)< 5.\dfrac{1}{10}+25.\dfrac{1}{15}=\dfrac{1}{2}+\dfrac{5}{3}=\dfrac{8}{6}=\dfrac{4}{3}< \dfrac{5}{2}\)

19 tháng 7 2017

\(\dfrac{11}{12}-\left(\dfrac{2}{5}-\dfrac{3}{4}x\right)=\dfrac{2}{3}\)

\(\dfrac{2}{5}-\dfrac{3}{4}x=\dfrac{11}{12}-\dfrac{2}{3}\)

\(\dfrac{2}{5}-\dfrac{3}{4}x=\dfrac{1}{4}\)

\(\dfrac{3}{4}x=\dfrac{2}{5}-\dfrac{1}{4}\)

\(\dfrac{3}{4}x=\dfrac{3}{20}\)

\(x=\dfrac{3}{20}:\dfrac{3}{4}\)

=> \(x=\dfrac{1}{5}\)

19 tháng 7 2017

\(\dfrac{11}{12}\)- (\(\dfrac{2}{5}-\dfrac{3}{4}\)x ) = \(\dfrac{2}{3}\)

\(\dfrac{2}{5}-\dfrac{3}{4}\)x = \(\dfrac{11}{12}\)- \(\dfrac{2}{3}\)

\(\dfrac{2}{5}-\dfrac{3}{4}\)x = \(\dfrac{1}{4}\)

\(\dfrac{3}{4}\)x = \(\dfrac{2}{5}\)- \(\dfrac{1}{4}\)

\(\dfrac{3}{4}\)x = \(\dfrac{3}{20}\)

x = \(\dfrac{3}{20}\): \(\dfrac{3}{4}\)

x= \(\dfrac{1}{5}\)

N
11 tháng 8 2017

a)  \(P=\frac{1+2}{1^2.2^2}+\frac{2+3}{2^2.3^2}+...+\frac{9+10}{9^2.10^2}\)

\(P=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\) ( rút gọn số mũ nhé )

\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\)

\(P=1-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

Vì \(\frac{9}{10}< 1\Rightarrow P< 1\) (đpcm)

b) Chút nữa mình làm nhé ^^

11 tháng 8 2017

b) 

\(Q=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)

Ta so sánh giữa A và Q.

\(\frac{1}{1.2}>\frac{1}{3};\frac{1}{2.3}>\frac{1}{3^2};\frac{1}{3.4}>\frac{1}{3^3};....;\frac{1}{100.101}>\frac{1}{3^{100}}\)

\(\Rightarrow Q< A\)

Ta lại tiếp tục so sánh A và \(\frac{1}{2}\)

Ta có :

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\Leftrightarrow A< \frac{1}{2}\)

Ta được:

\(Q< A< \frac{1}{2}\Leftrightarrow Q< \frac{1}{2}\)

26 tháng 7 2017

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

26 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)