Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
là A, ta có
\(A=\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
\(\Rightarrow2.A=\dfrac{2}{25.27}+\dfrac{2}{27.29}+\dfrac{2}{29.31}+...+\dfrac{2}{73.75}\)\(\Rightarrow2.A=\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\)\(\Rightarrow2.A=\dfrac{1}{25}-\dfrac{1}{75}\)
\(\Rightarrow2.A=\dfrac{2}{75}\)
\(\Rightarrow A=\dfrac{2}{75}\div2\)
\(\Rightarrow A=\dfrac{1}{75}\)
KL: Vậy A =\(\dfrac{1}{75}\)
D= 1/2. (1/25-1/27 +1/27-1/29+...+1/73-1/75)
= 1/2. (1/25 -1/75)
=1/2 . 2/75= 1/75
D = \(\dfrac{1}{25.27}+\dfrac{1}{27.29}+...+\dfrac{1}{73.75}\)
2D = 2( \(\dfrac{1}{25.27}+\dfrac{1}{27.29}+...+\dfrac{1}{73.75}\) )
= \(\dfrac{2}{25.27}+\dfrac{2}{27.29}+...+\dfrac{2}{73.75}\)
= \(\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\)
= \(\dfrac{1}{25}-\dfrac{1}{75}\)
= \(\dfrac{2}{75}\)
a, \(A=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+...+\dfrac{5^2}{26.31}\)
\(A=5.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+...+\dfrac{5}{26.31}\right)\)
\(A=5.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
(do \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)
\(A=5.\left(1-\dfrac{1}{31}\right)=5.\dfrac{30}{31}=\dfrac{150}{31}\)
b, \(B=\dfrac{6}{15.18}+\dfrac{6}{18.21}+...+\dfrac{6}{87.90}\)
\(B=2\left(\dfrac{3}{15.18}+\dfrac{3}{18.21}+...+\dfrac{13}{87.90}\right)\)
\(B=2\left(\dfrac{1}{15}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{21}+...+\dfrac{1}{87}-\dfrac{1}{90}\right)\)
(do \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)
\(B=2\left(\dfrac{1}{15}-\dfrac{1}{90}\right)=2.\dfrac{1}{18}=\dfrac{1}{9}\)
c, \(C=\dfrac{3^2}{8.11}+\dfrac{3^2}{11.14}+...+\dfrac{3^2}{197.200}\)
\(C=3\left(\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{197.200}\right)\)
\(C=3\left(\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{197}-\dfrac{1}{200}\right)\)
(do \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)
\(C=3\left(\dfrac{1}{8}-\dfrac{1}{200}\right)=3.\dfrac{3}{35}=\dfrac{9}{35}\)
Chúc bạn học tốt!!!
\(A=\dfrac{14}{8.11}+\dfrac{14}{11.14}+\dfrac{14}{14.17}+.....+\dfrac{14}{197.200}\)
\(A=\dfrac{14}{3}\left(\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{197}-\dfrac{1}{200}\right)\)
\(A=\dfrac{14}{3}.\left(\dfrac{1}{8}-\dfrac{1}{200}\right)\)
\(A=\dfrac{14}{3}.\dfrac{24}{200}=\dfrac{28}{25}\)
\(B=\dfrac{7}{15}+\dfrac{7}{35}+\dfrac{7}{63}+...+\dfrac{7}{399}\)
\(B=\dfrac{7}{3.5}+\dfrac{7}{5.7}+\dfrac{7}{7.9}+.....\dfrac{7}{19.21}\)
\(B=\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\)
\(B=\dfrac{7}{2}.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)\)
\(B=\dfrac{7}{2}.\dfrac{6}{21}=1\)
1,
\(\dfrac{3}{2^2}\cdot\dfrac{8}{3^2}\cdot\dfrac{15}{4^2}...\dfrac{899}{30^2}\\ =\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}....\dfrac{29\cdot31}{30\cdot30}\\ =\left(\dfrac{1\cdot2\cdot3\cdot...\cdot29}{2\cdot3\cdot4\cdot....\cdot30}\right)\cdot\left(\dfrac{3\cdot4\cdot5\cdot....\cdot31}{2\cdot3\cdot4.....\cdot30}\right)\\ =\dfrac{1}{30}\cdot\dfrac{31}{2}\\ =\dfrac{31}{60}\)
2,
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{37\cdot38\cdot39}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{37\cdot38\cdot39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+\dfrac{1}{3\cdot4}-\dfrac{1}{4\cdot5}+....+\dfrac{1}{37\cdot38}-\dfrac{1}{38\cdot39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{38\cdot39}\right)\\ =\dfrac{1}{4}-\dfrac{1}{3964}\\ =\dfrac{185}{741}\)
3, Làm tương tự, áp dụng ; \(\dfrac{n}{x\left(x+n\right)}=\dfrac{1}{x}-\dfrac{1}{x+n}\)
\(G=\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}+\dfrac{2}{98.101}\)
\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}+\dfrac{3}{98.101}\right)\)
\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{101}\right)\)
\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)
\(\Rightarrow G=\dfrac{2}{3}.\dfrac{96}{505}\)
\(\Rightarrow G=\dfrac{64}{505}\)
Bài 1:
a: \(A=\dfrac{1\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}{2\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}\cdot\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}+\dfrac{6}{7}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{7}+\dfrac{6}{7}=\dfrac{1}{7}+\dfrac{6}{7}=1\)
b: \(B=2000:\left[\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}\cdot\dfrac{-\dfrac{7}{6}+\dfrac{7}{8}-\dfrac{7}{10}}{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}\right]\)
\(=2000:\left[\dfrac{2}{7}\cdot\dfrac{-7}{2}\right]=-2000\)
c: \(C=10101\cdot\left(\dfrac{5}{111111}+\dfrac{1}{111111}-\dfrac{4}{111111}\right)\)
\(=10101\cdot\dfrac{2}{111111}=\dfrac{2}{11}\)
Đăng ít thôi.
d) \(D=\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+\dfrac{1}{4.5.6}+\dfrac{1}{5.6.7}+\dfrac{1}{6.7.8}+\dfrac{1}{7.8.9}+\dfrac{1}{8.9.10}\)
\(\Rightarrow2D=\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}+\dfrac{2}{7.8.9}+\dfrac{2}{8.9.10}\)
\(\Rightarrow2D=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{4.5}-\dfrac{1}{5.6}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)
\(\Rightarrow2D=\dfrac{1}{2.3}-\dfrac{1}{9.10}\)
\(\Rightarrow2D=\dfrac{22}{45}\)
\(\Rightarrow D=\dfrac{11}{45}\)
B=1/2. (2/25.27+2/27.29+2/29.31+....+2/73.75) B=1/2. (1/25-1/27+1/27-1/29+1/29-1/31+....+1/73-1/75) B=1/2. (1/25-1/75) B=1/2. 2/75 B=1/75
\(3A=\dfrac{3}{8.11}+\dfrac{3}{18.21}+..+\dfrac{3}{197.200}\)