Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,2x^8-12x^4+18=2(x^8-6x^4+9)=2[(x^4)^2-2.x^4.3+3^2] =2(x^4+3)^2 c,=-2(a^6+4a^3b-4b^2)=-2[(a^3)^2+2.a^3.2b-(2b)^2]=-2(a^3-2b)^2 d, 4x+4xy^6+xy^12=x(4+4y^6+y^12)=X[2^2+2.2.y^6+(y^6)^2]=x(2+y^6)^2 Câu b Mình sẽ làm sau nh, trên đây là theo cách giải của mình thui.
1, \(25x^2-10xy+y^2=\left(5x-y\right)^2\)
2, \(8x^3+36x^2y+54xy^2+27y^3=\left(2x+3y\right)^3\)
4, \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
5, \(2x^3+3x^2+2x+3\)
\(=x^2\left(2x+3\right)+2x+3\)
\(=\left(x^2+1\right)\left(2x+3\right)\)
6, \(x^3z+x^2yz-x^2z^2-xyz^2\)
\(=x^3z-x^2z^2+x^2yz-xy^2\)
\(=xz\left(x^2-xz\right)+xz\left(xy-yz\right)\)
\(=xz\left[x\left(x-z\right)+y\left(x-z\right)\right]\)
\(=xz\left(x+y\right)\left(x-z\right)\)
8, \(x^3+3x^2y+3xy^2+y+y^3\)\(=\left(x+y\right)^3+y\)
9, \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
10, \(x^2-8x+12\)
\(=x^2-6x-2x+12\)
\(=x\left(x-6\right)-2\left(x-6\right)\)
\(=\left(x-2\right)\left(x-6\right)\)
Chỗ còn lại mai làm nốt nha.
Gặp chút sự cố đăng nhập nên hơi muộn, xin lỗi nha
11, \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)
\(=a^2b-ab^2+abc-a^2c+b^2c-abc+ac^2-c^2b\)
\(=ab\left(a-b\right)-ac\left(a-b\right)-bc\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)
\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
12, \(x^3-7x-6\)
\(=x^3-3x^2+3x^2-9x+2x-6\)
\(=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)
13, \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
14, \(a^4+64\)
\(=a^4+16a^2+64-16a^2\)
\(=\left(a^2+8\right)^2-16a^2\)
\(=\left(a^2-4a+8\right)\left(a^2+4a+8\right)\)
15, \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
16, \(x^5+x-1\)
\(=x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x^2-1\right)\)
17, \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-15\)
19, \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) (*)
Đặt \(x^2+8x+7=a\) ta có:
(*) \(\Leftrightarrow a\left(a+8\right)+15\)
\(\Leftrightarrow a^2+8a+15\)
\(\Leftrightarrow a^2+3a+5a+15\)
\(\Leftrightarrow a\left(a+3\right)+5\left(a+3\right)\)
\(\Leftrightarrow\left(a+3\right)\left(a+5\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
20, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\) (*)
Đặt \(x^2+3x+1=a\) ta có:
(*) \(\Leftrightarrow a\left(a+1\right)-6\)
\(\Leftrightarrow a^2+a-6\)
\(\Leftrightarrow a^2+3a-2a-6\)
\(\Leftrightarrow a\left(a+3\right)-2\left(a+3\right)\)
\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x+5\right)\)
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
1: \(4a^2b^4-c^4d^2\)
\(=\left(2ab^2-c^2d\right)\left(2ab^2+c^2d\right)\)
4: \(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2b\left(3a^2+b^2\right)\)
5: \(\left(a+b\right)^3+\left(a-b\right)^3\)
\(=a^3+b^3+3a^2b+3ab^2+a^3-3a^2b+3ab^2-b^3\)
\(=2a^3+6ab^2\)
\(=2a\left(a^2+3b^2\right)\)
\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)
a: \(=\dfrac{2^{36}}{2^{12}}=2^{24}\)
b: \(=3^{18}:\dfrac{3^2}{5^2}=3^{16}\cdot5^2\)
c: \(=-\dfrac{\left(a-b\right)^5}{\left(a-b\right)^3}=-\left(a-b\right)^2\)
d: \(\dfrac{\left(a-b\right)^7}{\left(b-a\right)^4}=\dfrac{\left(a-b\right)^7}{\left(a-b\right)^4}=\left(a-b\right)^3\)