Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-0,12\right)^3=\left(-\frac{12}{100}\right)^3=\left(-\frac{6}{50}\right)^3=\left(-\frac{3}{25}\right)^3=\left(-\frac{3^3}{25^3}\right)=-\frac{27}{15625}\)
\(\frac{0,12}{3}=\frac{0,21}{x}\)
\(\Leftrightarrow0,12.x=0,21.3\)
\(\Leftrightarrow0,12.x=0,63\)
\(\Leftrightarrow x=0,63:0,12\)
\(\Leftrightarrow x=5,25\)
-996; 0,12(23) 0,12(234) ;0,(19); 0,(4) ....bạn làm tiếp nhé tui không dọc được .....
Nhận thấy x2 + 1 \(\ge\)1 > 0 \(\forall\)x
=> \(\left(2x^2-3\right)\left(3x^2-\frac{1}{0,12}\right)\left(x^2+1\right)=0\)
<=> \(\orbr{\begin{cases}2x^2-3=0\\3x^2-\frac{1}{0,12}=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x^2=3\\3x^2=\frac{1}{0,12}\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=\frac{3}{2}\\x^2=\frac{1}{0,36}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{3}{2}}\\x=\pm\frac{1}{0,6}\end{cases}}\)
Vậy \(x\in\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}};-\frac{1}{0,6};\frac{1}{0,6}\right\}\)là giá trị cần tìm
\(\left(2x^2-3\right)\left(3x^2-\frac{1}{0,12}\right)\left(x^2+1\right)=0\)
Nhận thấy rằng x2 + 1 ≥ 1 > 0 ∀ x
=> \(\left(2x^2-3\right)\left(3x^2-\frac{1}{0,12}\right)\left(x^2+1\right)=0\)
<=> \(\orbr{\begin{cases}2x^2-3=0\\3x^2-\frac{1}{0,12}=0\end{cases}}\)
+) 2x2 - 3 = 0
<=> 2x2 = 3
<=> x2 = 3/2
<=> x = \(\pm\sqrt{\frac{3}{2}}\)
+) 3x2 - 1/0,12 = 0
<=> 3x2 - 25/3 = 0
<=> 3x2 = 25/3
<=> x2 = 25/9
<=> x = \(\pm\frac{5}{3}\)
Vậy S = { \(\pm\frac{5}{3}\); \(\pm\sqrt{\frac{3}{2}}\))
\(\left(2x^2-3\right)\left(3x^2-\dfrac{1}{0,12}\right)\left(x^2+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x^2-3=0\\3x^2-\dfrac{1}{0,12}=0\\x^2+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}2x^2=3\\3x^2=\dfrac{1}{0,12}\\x^2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x^2=3\Rightarrow x^2=1,5\\3x^2=\dfrac{1}{0,12}\Rightarrow x^2=\dfrac{25}{9}\\x^2=-1\Rightarrow x\in\varnothing\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{1,5}\\x=\pm\dfrac{5}{3}\end{matrix}\right.\)
Bài làm:
1) \(\frac{3}{5}\div\frac{2x}{15}=\frac{1}{2}\div\frac{4}{5}\)
\(\Leftrightarrow\frac{9}{2x}=\frac{5}{8}\)
\(\Rightarrow10x=72\)
\(\Leftrightarrow x=\frac{36}{5}\)
2) \(-\frac{4}{2,5}\div\frac{3}{5}=\frac{1}{5}\div x\)
\(\Leftrightarrow\frac{1}{5}\div x=-\frac{8}{3}\)
\(\Rightarrow x=-\frac{3}{40}\)
3) \(0,12\div3=2x\div\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{25}=\frac{10}{3}x\)
\(\Rightarrow x=\frac{3}{250}\)
0,75 + \(\dfrac{9}{5}\) ( 1,5 - \(\dfrac{2}{3}\) )2
= 0,75 + \(\dfrac{9}{5}\) ( \(\dfrac{3}{2}\) - \(\dfrac{2}{3}\))2
= 0,75 + \(\dfrac{9}{5}\) (\(\dfrac{5}{6}\))2
= 0,75 + \(\dfrac{5}{4}\)
= 0,75 + 1,25
= 2
\(\dfrac{-22}{25}\) + ( \(\dfrac{22}{7}\) - 0,12)
= \(\dfrac{-22}{25}\) + ( \(\dfrac{22}{7}\) - \(\dfrac{3}{25}\))
= \(\dfrac{-22}{25}\) + \(\dfrac{22}{7}\) - \(\dfrac{3}{25}\)
= - ( \(\dfrac{22}{25}\) + \(\dfrac{3}{25}\)) + \(\dfrac{22}{7}\)
= -1 + \(\dfrac{22}{7}\)
= \(\dfrac{-7}{7}\) + \(\dfrac{22}{7}\)
= \(\dfrac{15}{7}\)
a) \dfrac{3}{4}+\dfrac{9}{5}\left(\dfrac{3}{2}-\dfrac{2}{3}\right)^2=\dfrac{3}{4}+\dfrac{9}{5}\left(\dfrac{5}{6}\right)^2=\dfrac{3}{4}+\dfrac{9}{5} \cdot \dfrac{25}{36}=\dfrac{3}{4}+\dfrac{5}{4}=243+59(23−32)2=43+59(65)2=43+59⋅3625=43+45=2
b) \dfrac{-22}{25}+\left(\dfrac{22}{7}-0,12\right) =\dfrac{-22}{25}+\left(\dfrac{22}{7}-\dfrac{12}{100}\right)=\dfrac{-88}{100}+\dfrac{22}{7}+\dfrac{-12}{100} =\left(\dfrac{-88}{100}+\dfrac{-12}{100}\right)+\dfrac{22}{7}=-1+\dfrac{22}{7}=\dfrac{15}{7}25−22+(722−0,12) =25−22+(722−10012)=100−88+722+100−12 =(100−88+100−12)+722=−1+722=715
0.36
\(0,12\left(3\right)=\dfrac{37}{100}=0,37\)