K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Lời giải:
Với $x=3, y=\frac{1}{3}$ thì $xy=3.\frac{1}{3}=1$
Khi đó:

$A=xy+(xy)^2+(xy)^4+...+(xy)^{2022}=1+1^2+1^4+...+1^{2022}$

$=\underbrace{1+1+....+1}_{1012}=1012.1=1012$
b. Đề thiếu dữ kiện về $x,y$

26 tháng 3 2017

\(a\))  \(xy+x^2y^2+x^3y^3+x^4y^4+...+x^{10}y^{10}\)

\(\Rightarrow xy+\left(xy\right)^2+\left(xy\right)^3+\left(xy\right)^4+...+\left(xy\right)^{10}\)

\(x=-1\)  ,   \(y=1\) nên  \(xy=\left(-1\right).1=-1\)

\(\Rightarrow-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+...+\left(-1\right)^{10}\)

\(\Rightarrow-1+1-1+1-...+1\)\(=0\)

Vậy …..

\(b\))  Làm tương tự như phần a) , ( nhóm cả x,y,z vào trong ngoặc rồi đặt số mũ 1,2,3,4,…,10 ra ngoài)    

14 tháng 4 2017

Bạn chỉ cần thay vào tính là được thôi!!!haha

14 tháng 4 2017

a, Thay x=-1 vào biểu thức A ta có:

\(A=2\left(-1\right)^2+\left(-1\right)+1\)

\(A=2.1+\left(-1\right)+1\)

\(A=2\)

Thay \(x=\dfrac{1}{4}\) vào biểu thức A ta có:

\(A=2\left(\dfrac{1}{4}\right)^2+\dfrac{1}{4}+1\)

\(A=2.\dfrac{1}{16}+\dfrac{1}{4}+1\)

\(A=\dfrac{1}{8}+\dfrac{1}{4}+1\)

\(A=\dfrac{1}{8}+\dfrac{2}{8}+1\)

\(A=\dfrac{11}{8}\)

b, Thay x=-1; y=3 vào biểu thức B ta có:

\(B=\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\)

\(B=1.9-3-1+27\)

\(B=2+27\)

\(B=29\)

c, Thay x=-1 vào biểu thức C ta có:

\(C=\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+\left(-1\right)^8+...+\left(-1\right)^{100}\)

\(C=1^4+1^6+1^8+1^9+...+1^{100}\)

\(C=100\)

d, Thay x+y=3; xy=-5 vào biểu thức D ta có:

\(D=3.\left(x+1\right).\left(y+1\right)\)

\(D=3.\left[\left(x.y\right)+1\right]\)

\(D=3.\left[\left(-5\right)+1\right]\)

\(D=3.\left(-4\right)\)

\(D=-12\)

Tích mình nha!!!hahahahahaha

a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{8}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)

\(=\dfrac{-1}{8}+\dfrac{1}{12}-\dfrac{1}{18}=-\dfrac{7}{72}\)

b: \(B=\left(-1\cdot3\right)^2+\left(-1\right)\cdot3-1+27\)

\(=9-3-1+27\)

=36-4=32

c: \(C=-0.7xy^2-2x^2y-4.5xy\)

\(=-0.7\cdot\dfrac{1}{2}\cdot1-2\cdot0.25\cdot\left(-1\right)-4.5\cdot0.5\cdot\left(-1\right)\)

\(=\dfrac{-7}{20}+\dfrac{1}{2}+\dfrac{9}{2}\cdot\dfrac{1}{2}\)

\(=\dfrac{12}{5}\)

a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.Trước hết ta thu gọn đa thứcA = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3 Thay x = 5; y = 4 ta được:A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.Vậy A = 129 tại x = 5 và y = 4.b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.Thay x = -1; y = -1 vào biểu thức ta được: M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8 = 1 -1 + 1 - 1+ 1 = 1. Tải xuống 0

5 tháng 8 2020

a) Ta có : \(x^2+2xy-3x^3+2y^3+3x^3-y^3\)

\(=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)\)

\(=x^2+2xy+y^3\)

Thay x = 5,y = 4 vào đa thức trên ta có : \(x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)

b) Thay \(x=-1,y=-1\) vào đa thức trên ta có :

(-1)(-1) - (-1)2(-1)2 + (-1)4(-1)4 - (-1)6(-1)6 + (-1)8(-1)8

= 1 - 1 + 1 - 1 + 1 =1

19 tháng 7 2018

1)   \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

3)  \(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)\)

\(=abx^2+aby^2+a^2xy+b^2xy\)

\(=ax\left(bx+ay\right)+by\left(ay+bx\right)\)

\(=\left(ay+bx\right)\left(ax+by\right)\)

19 tháng 7 2018

4)  \(-12x^4y+12x^3y^2-3x^2y^3\)

\(=-3x^2y\left(4x^2-4xy+y^2\right)\)

\(=-3x^2y\left(2x-y\right)^2\)

x+y+1=0 suy ra x+y=1

Làm câu A nhé B,C tương tự

A= x^2.(x+y-2)-(xy+y^2-2y)+(y+x-1)=0-y.(x+y-2)+1=1

Hok tốt

xin lỗi nha x+y=-1 nhé

6 tháng 1 2019

a)\(A=x^3+x^2y-xy-y^2+3y+x-1\)

               Ta có:\(x+y-2=0\Rightarrow x+y=2\)

  \(A=x^2\left(x+y\right)-y\left(x+y\right)+3y+x-1\)

     \(=2x^2-2y+3y+x-1\)

     \(=2x^2+y+x-1\)

     \(=2x^2+2-1\)

    \(=2x^2+1\)

8 tháng 1 2019

b) x - y = 0 => x = y

B = x( x^2 + y^2 ) - y ( x^2 + y^2 ) + 3

= x(x^2 + x^2 ) - x (x^2 + x^2 ) + 3

= 3