K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

a) \(\left(x-3\right)\left(x+3\right)-\left(x+1\right)^2\) = \(x^2-9-\left(x^2+2x+1\right)\)

\(x^2-9-x^2-2x-1\) = \(-2x-10\)

b) \(\left(4x-3\right)\left(4x+3\right)-16x^2\) = \(16x^2-9-16x^2=-9\)

c) \(\left(x+4\right)\left(x^2-4x+16\right)-x^3\) = \(x^3-4x^2+16x+4x^2-16x+64-x^3\)

= \(64\)

28 tháng 6 2017

\(a,\left(x-3\right)\left(x+3\right)-\left(x+1\right)^2=x^2-9-x^2-2x-1=-10-2x\) \(b,\left(4x-3\right)\left(4x+3\right)-16x^2=16x^2-9-16x^2=-9\)\(c,\left(x+4\right)\left(x^2-4x+16\right)-x^3=x^3+64-x^3=64\)

26 tháng 6 2017

\(a,\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\) \(=x^3+1-x^3+1=2\)

\(b,x\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x\left(x^2-16\right)-\left(x^4-1\right)=x^3-16x-x^4+1\) \(c,\left(x-3\right)\left(x+3\right)-\left(x+1\right)^2\)

\(=x^2-9-x^2-2x-1=-2x-10\)

\(d,\left(4x-3\right)\left(4x+3\right)-16x^2\)

\(=16x^2-9-16x^2=-9\)

\(e,\left(x+4\right)\left(x^2-4x+16\right)-x^3=x^3+64-x^3=64\)

a) Ta có: \(x^2+4x+3\)

\(=x^2+x+3x+3\)

\(=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

b) Ta có: \(16x-5x^2-3\)

\(=-5x^2+16x-3\)

\(=-5x^2+15x+x-3\)

\(=-5x\left(x-3\right)+\left(x-3\right)\)

\(=\left(x-3\right)\left(-5x+1\right)\)

c) Ta có: \(2x^2+7x+5\)

\(=2x^2+2x+5x+5\)

\(=2x\left(x+1\right)+5\left(x+1\right)\)

\(=\left(x+1\right)\left(2x+5\right)\)

d) Ta có: \(2x^2+3x-5\)

\(=2x^2+5x-2x-5\)

\(=x\left(2x+5\right)-\left(2x+5\right)\)

\(=\left(2x+5\right)\left(x-1\right)\)

e) Ta có: \(x^3-3x^2+1-3x\)

\(=\left(x+1\right)\cdot\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

f) Ta có: \(x^2-4x-5\)

\(=x^2-4x+4-9\)

\(=\left(x-2\right)^2-3^2\)

\(=\left(x-2-3\right)\left(x-2+3\right)\)

\(=\left(x-5\right)\left(x+1\right)\)

g) Ta có: \(\left(a^2+1\right)^2-4a^2\)

\(=\left(a^2+1\right)^2-\left(2a\right)^2\)

\(=\left(a^2+1-2a\right)\left(a^2+1+2a\right)\)

\(=\left(a-1\right)^2\cdot\left(a+1\right)^2\)

h) Ta có: \(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-4\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

i) Ta có: \(x^4+x^3+x+1\)

\(=x^3\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+1\right)\)

\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)

k) Ta có: \(x^4-x^3-x^2+1\)

\(=x^3\left(x-1\right)-\left(x^2-1\right)\)

\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3-x-1\right)\)

l) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)

\(=3x\left(x+2\right)\)

m) Ta có: \(x^4+4x^2-5\)

\(=x^4-x^2+5x^2-5\)

\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7

a: \(\Leftrightarrow\left(x+12-3x\right)\left(x+12+3x\right)=0\)

=>(-2x+12)(4x+12)=0

=>x=-3 hoặc x=6

b: \(\Leftrightarrow20x^3-15x^2+45x-45=0\)

=>\(x\simeq0.93\)

d: =>-4x+28+11x=-x+3x+15

=>7x+28=2x+15

=>5x=-13

=>x=-13/5

e: \(\Leftrightarrow4x^3-12x+x=4x^3-3x+5\)

=>-9x=-3x+5

=>-6x=5

=>x=-5/6

11 tháng 8 2016

Bài 1:

a. A = x^2 - 5x - 1

\(=x^2-5x+\frac{25}{4}-\frac{29}{4}\)

\(=x^2-5x+\left(\frac{5}{2}\right)^2-\frac{29}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{29}{4}\ge0-\frac{29}{4}=-\frac{29}{4}\)

Dấu = khi x=5/2

Vậy MinC=-29/4 khi x=5/2

 

 

11 tháng 8 2016

2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 )( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )

=>4x2-12x+9+1-16x2=-14x2+13x-3

=>-12x2-12x+10=-14x2+13x-3

=>2x2-25x+13=0

\(\Rightarrow2\left(x-\frac{25}{4}\right)^2-\frac{521}{8}=0\)

\(\Rightarrow\left(x-\frac{25}{4}\right)^2=\frac{521}{16}\)

\(\Rightarrow x-\frac{25}{4}=\pm\sqrt{\frac{521}{16}}\)

\(\Rightarrow x=\frac{25}{4}\pm\frac{\sqrt{521}}{4}\)

c. 4.( x - 3 ) - ( x + 2 ) = 0

=>4x-12-x-2=0

=>3x-14=0

=>3x=14

=>x=14/3

 

 

a: \(=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=x\left(x+1\right)\left(4x^2-1\right)\)

\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)

b: \(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)

\(=x^2\cdot\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)

\(=x^2\left(x-1\right)\left(x^3+x-9\right)\)

d: \(=\left(xy+4\right)^2-\left(2x+2y\right)^2\)

\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)

\(=\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\)

\(=\left(y-2\right)\left(x-2\right)\left(y+2\right)\left(x+2\right)\)

e: \(=\left(ab-xy-bx+ay\right)\left(ab-xy+bx-ay\right)\)

\(=\left[a\left(b+y\right)-x\left(b+y\right)\right]\left[b\left(a+x\right)-y\left(a+x\right)\right]\)

\(=\left(b+y\right)\left(a-x\right)\left(a+x\right)\left(b-y\right)\)