Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)
\(=\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(2.3+1\right)}\)
\(=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}.7}=\frac{2.6}{3.7}=\frac{4}{7}\)
a, \(A=\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{8}{9}-\left(\frac{1}{8}-\frac{1}{9}+\frac{1}{7}-\frac{1}{8}+\frac{1}{6}-\frac{1}{7}+...+1-\frac{1}{2}\right)\)
\(A=\frac{8}{9}-\left(1-\frac{1}{9}\right)\)
\(A=\frac{8}{9}-\frac{8}{9}\)
\(A=0\)
\(\left(\frac{1}{4}-x\right)\left(x+\frac{2}{5}\right)=0\)
Ta xét 2 trường hợp
\(\begin{cases}\frac{1}{4}-x=0\\x+\frac{2}{5}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=-\frac{2}{5}\end{cases}}\)
tớ mới làm bài 1 thôi bài 2 3 tớ ko có thời gian
A = \(\frac{1}{2}-\frac{3}{4}+\frac{5}{6}-\frac{7}{12}\)
A = \(\left(-\frac{1}{4}\right)+\frac{5}{6}-\frac{7}{12}\)
A = \(\frac{7}{12}-\frac{7}{12}\)
A = \(0\).
Mình làm câu A thôi nhé.
Chúc bạn học tốt!
a)
\(A=\left(\frac{1}{9}-\frac{1}{10}\right)-\left(\frac{1}{8}-\frac{1}{9}\right)-....-\left(1-\frac{1}{2}\right)=\frac{1}{9}-\frac{1}{10}-\frac{1}{8}+\frac{1}{9}-....-1+\frac{1}{2}\)
\(A=-\left(\frac{1}{10}+1\right)=-\frac{11}{10}\)
a)\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\\ \Rightarrow A=-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}\\ \Rightarrow A=-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)Đặt \(B=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{72}+\frac{1}{90}\)
\(\Rightarrow B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(\Rightarrow B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow B=1-\frac{1}{10}=\frac{9}{10}\)
Ta có : \(A=-B\)
\(\Rightarrow A=-\frac{9}{10}\)