Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>\(-\left|x-2011\right|+\left(x-2011\right)^2=0\)
\(\Leftrightarrow\left|x-2011\right|\left(\left|x-2011\right|-1\right)=0\)
\(\Leftrightarrow x\in\left\{2011;2012;2010\right\}\)
Ta có:
\(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2=4abc\)
\(\Leftrightarrow\left(ab+ac\right)\left(b+c\right)+b\left(c^2+2ac+a^2\right)+c\left(a^2+2ab+b^2\right)=4abc\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac\right)+bc^2+2abc+ba^2+ca^2+2abc+cb^2-4abc=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac\right)+\left(bc^2+cb^2\right)+\left(ba^2+ca^2\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac\right)+bc\left(b+c\right)+a^2\left(b+c\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc+a^2\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left[b\left(c+a\right)+a\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\\a+b=0\\c+a=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}b=-c\\a=-b\\c=-a\end{matrix}\right.\)
Ta lại có:
\(a^{2013}+b^{2013}+c^{2013}=1\)
Với : \(b=-c\Leftrightarrow a^{2013}-c^{2013}+c^{2013}=1\Leftrightarrow a=1\)
\(\Rightarrow M=\dfrac{1}{a^{2015}}+\dfrac{1}{b^{2015}}+\dfrac{1}{c^{2015}}=\dfrac{1}{1}+\dfrac{-1}{c^{2015}}+\dfrac{1}{c^{2015}}=1\)
Mà do \(a,b,c\) bình đẳng nên với trường hợp nào đều là \(M=1\)
\(|x - 2013| \ge 0 \forall x \\\Leftrightarrow 2012|x - 2013| \ge 0 \forall x \\\Leftrightarrow 2011 + 2012 |x - 2013| \ge 2011 \forall x \)
Dấu "=" xảy ra khi
\(|x - 2013| = 0 \\\Leftrightarrow x - 2013 =0 \\\Leftrightarrow x = 2013\)
Vậy \(Min_A = 2011 \) khi\(x = 2013\)
Câu 1:
a: =(1+2-3-4)+(5+6-7-8)+...+(2013+2014-2015-2016)
=(-4)+(-4)+...+(-4)
=-4x504=-2016
b: \(B=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{195}{196}=\dfrac{1\cdot3\cdot2\cdot4\cdot...\cdot13\cdot15}{2\cdot3\cdot...\cdot14\cdot2\cdot3\cdot...\cdot14}=\dfrac{15}{14\cdot2}=\dfrac{15}{28}\)
Câu 1:
\(\Leftrightarrow4\cdot4^{2013}=4^n\)
=>4^n=4^2014
=>n=2014