K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

Khoảng cách giữa hai thừa số trong mỗi số hạng là 2, nhân 2 vế của A với 3 lần khoảng cách này ta được :

6A=1.3.6 + 3.5.6 + 5.7.6 + ... + 97.99.6

=1.3(5+1) + 3.5(7-1) + 5.7(9-3) + ... + 97.99(101-95)

=1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99

=1.3.5 + 3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7+ ... + 97.99.101 - 97.97.99

=3+97.99.101

\(\frac{1+97.33.101}{1}=161651\)

Ta có :

B = 1.3 + 3.5 + 5.7 + 7.9 + ... + 97.99

6.B = 1.3.6 + 3.5.6 + 5.7.6 +...+ 97.99.6

6.B = 1.3.[ 5 - (-1) ] + 3.5.( 7 - 1 ) + 5.7.( 9 - 3 ) + ...+ 97.99.( 101 - 95 )

6.B = 1.3.5 - ( -1).3.5 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99

6.B = 97.99.101 - ( -1 ) .3.5

6.B = 97.99.101 + 1.3.5

6.B = 969918

=> B = 161653.

29 tháng 2 2020

Bạn tham khảo nhé!

Ta có: A = 1.3 + 3.5 + 5.7 +…+ 97.99 + 99.101

A = 1.(1 + 2) + 3.(3 + 2) + 5.(5 + 2) + … + 97.(97 + 2) + 99.(99 + 2)

A = (12 + 32 + 52 + … + 972 + 992) + 2.(1 + 3 + 5 + … + 97 + 99).

Đặt B = 12 + 32 + 52 + … + 992

=> B = (12 + 22 + 32 + 42 + … + 1002) – 22.(12 + 22 + 32 + 42 + … + 502)

Tính dãy tổng quát C = 12 + 22 + 32 + … + n2

C = 1.(0 + 1) + 2.(1 + 1) + 3.(2 + 1) + … + n.[(n – 1) + 1]

C = [1.2 + 2.3 + … + (n – 1).n] + (1 + 2 + 3 + … + n)

C =  = n.(n + 1).[(n – 1) : 3 + 1 : 2] = n.(n + 1).(2n + 1) : 6

Áp dụng vào B ta được:

B = 100.101.201 : 6 – 4.50.51.101 : 6  = 166650

=> A = 166650 + 2.(1 + 99).50 : 2

=> A = 166650 + 5000 = 172650.

Đ/s: A = 172650.

12 tháng 5 2020

Ta có : S = 1.3 + 3.5 + 5.7 + .... + 97.99 + 99.101

=> 6S = 1.3.6 + 3.5.6 + 5.7.6 +...+ 97.99.6 + 99.101.6

           = 1.3.(5 + 1) + 3.5.(7 - 1) + 5.7.(9 - 3) + .... + 97.99.(101 - 95) + 99.101.(103 - 97)

           = 3 + 1.3.5 +  3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99 + 99.101.103 - 97.99.101

           = 3 + 99.101.103

           =  1029900

=> 6S = 1029900

=> S = 171650

12 tháng 5 2020

Ta có: A = 1.3 + 3.5 + 5.7 +…+ 97.99 + 99.101

A = 1.(1 + 2) + 3.(3 + 2) + 5.(5 + 2) + … + 97.(97 + 2) + 99.(99 + 2)

A = (1^2 + 3^2 + 5^2 + … + 97^2 + 99^2) + 2.(1 + 3 + 5 + … + 97 + 99).

Đặt B = 1^2 + 3^2 + 5^2 + … + 99^2

=> B = (1^2 + 2^2 + 3^2 + 4^2 + … + 100^2) – 2^2.(1^2 + 2^2 + 3^2 + 4^2 + … + 50^2)

Tính dãy tổng quát C = 1^2 + 2^2 + 3^2 + … + n^2

C = 1.(0 + 1) + 2.(1 + 1) + 3.(2 + 1) + … + n.[(n – 1) + 1]

C = [1.2 + 2.3 + … + (n – 1).n] + (1 + 2 + 3 + … + n)

C =  = n.(n + 1).[(n – 1) : 3 + 1 : 2] = n.(n + 1).(2n + 1) : 6

Áp dụng vào B ta được:

B = 100.101.201 : 6 – 4.50.51.101 : 6  = 166650

=> A = 166650 + 2.(1 + 99).50 : 2

=> A = 166650 + 5000 = 172650.

Đ/s: A = 172650.

30 tháng 3 2023

  A= \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+\(\dfrac{1}{7.9}\)+...+\(\dfrac{1}{97.99}\)

2A= 1 - \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\) - \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\) - \(\dfrac{1}{9}\)+...+\(\dfrac{1}{97}\)-\(\dfrac{1}{99}\)

2A= 1-\(\dfrac{1}{99}\)

2A= \(\dfrac{98}{99}\)

  A= \(\dfrac{98}{99}\) : 2

A=\(\dfrac{49}{99}\)

30 tháng 3 2023

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{97.99}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{98}{99}\)
\(=\dfrac{49}{99}\)

29 tháng 4 2018

 \(A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)

\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

\(A=\frac{1}{1}-\frac{1}{99}\)

\(A=\frac{98}{99}\)

29 tháng 4 2018

ta có A=1-1/3+1/2-1/5+..................1/95-1/97+1/97-1/99

        A=1-1/99

        A=98/99

11 tháng 5 2019

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

~ Hok tốt ~

\(\)

11 tháng 5 2019

Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99

13 tháng 5 2015

a),b) Tính ra rồi chứng minh (dãy số viết theo quy luật)

13 tháng 5 2015

Đây là toán lớp 1 hả??????????? Tớ  nghĩ là toán lớ 6 đấy!!!!!!