Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này cũng khá đơn giản, đầu tiên ta lập phương x thì được \(x^3=6+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}.\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)
hay ta có :\(x^3=6+3x\)
Làm tương tự như x thì cũng có \(y^3=34+3y\)
Đến đây thay vào P thì có P=6+3x+34+3y-3(x+y)+1967=6+34+1967=2007
Co : X=\(\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\)
\(\Leftrightarrow x^3=3-2\sqrt{2}+3+2\sqrt{2}\)+\(3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}x\)
\(\Leftrightarrow x^3=6+3x\)
CMTT : \(y^3=34+3y\)\(\)
\(\Leftrightarrow x^3+y^3-3\left(x+y\right)+2014=6+3x+34+3y-3x-3y+2014\)\(=2054\)
Cho P=x3+y3−3(x+y)+2017. Tính P khi x=3√3+2√2+3√3−2√2và yy=3√17+12√2+3√17−12√2
cứ lập phương cả x và y là được rồi cộng tổng lại được 2040
Ta có:\(x^3=3+2\sqrt{2}+3-2\sqrt{2}+3.\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)
\(=\) \(6+\sqrt[3]{9-8}.x\)\(=3x+6\)
Tương tự: \(y^3=3y+34\)
Do đó:\(x^3+y^3-3\left(x+y\right)+2010=3x+6+3y+34-3\left(x+y\right)+2010\)
\(=3\left(x+y\right)-3\left(x+y\right)+34+6+2010=2050\)