K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

Với x = 8

=> x + 1 = 9 (1)

Thay (1) vào biểu thức ta được

\(x^{10}-9x^9+9x^8-9x^7+...+9x^2-9x-2\)

\(=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x-2\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x-2\)

\(=-x-2\)

\(=-8-2=-10\)

26 tháng 8 2018

Tks ban nhieu lamm

5 tháng 8 2018

\(\left(3x+4\right)^3=\left(9x-8\right)\left(3x^2-8\right)\)

\(27x^3+108x^2+144x+64=27x^3-72x-24x^2+64\)

\(27x^3-27x^3+108x^2+24x^2+144x+72x=64-64=0\)

\(132x^2+216x=0\)

\(x\left(132x+216\right)=0\)

\(\Rightarrow x=\hept{\begin{cases}0\\\frac{216}{132}=\frac{18}{11}\end{cases}}\)

3 tháng 10 2017

sai rồi: (x4 + x2) - (9x3 + 9x)

= x2(x2 + 1) - 9x(x2 + 1)

= (x2 - 9x)(x2 + 1)

3 tháng 10 2017

uk uk nhưng sao lại ra cái hàng thứ hai ý. giải thích hộ đi

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

1.

\(x^2-22x+12\) : biểu thức không phân tích được thành nhân tử nữa.

2.

\(9x^2+6x+1=(3x)^2+2.3x.1+1^2=(3x+1)^2\)

3.

\(x^2-10x+2\): không p. tích được thành nhân tử.

4.

\(x^3+1=x^3+1^3=(x+1)(x^2-x+1)\)

5.

\(8x^3-27y^3=(2x)^3-(3y)^3=(2x-3y)[(2x)^2+(2x)(3y)+(3y)^2]\)

\(=(2x-3y)(4x^2+6xy+9y^2)\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

6.

\((x+3y)^2-(3y+1)^2=[(x+3y)-(3y+1)][(x+3y)+(3y+1)]\)

\(=(x-1)(x+6y+1)\)

7.

\(4y^2-36x^2=(2y)^2-(6x)^2=(2y-6x)(2y+6x)=4(y-3x)(y+3x)\)

8.

\(27-(x+4)^3=3^3-(x+4)^3=[3-(x+4)][3^2+3(x+4)+(x+4)^2]\)

\(=-(x+1)(37+x^2+11x)\)

9.

\(25x^2-10xy+y^2=(5x)^2-2.5x.y+y^2=(5x-y)^2\)

10.

\(9x^6-12x^7+4x^8=x^6(9-12x+4x^2)=x^6[3^2-2.3.2x+(2x)^2]\)

\(=x^6(3-2x)^2\)

8 tháng 10 2016

B= x3 - 3.x2.3 + 3.x.32 - 33 = (x-3)3        (áp dụng hằng đẳng thức số 5 )

thay x = 13 vào biểu thức trên ta được B= (13-3)=103 =1000

8 tháng 10 2016

Ta có

\(B=x^3-9x^2+27x-27=\left(x-3\right)^3\)

Thay x=13 vào B ta được 

(13-3)3=103=1000

Vậy x=13 thì B nhận giá trị là 1000

15 tháng 10 2018

mày viết lại cái đề bài hộ tao cái

17 tháng 10 2018

lm heets cmnr

29 tháng 9 2015

sao mà giải hết đống bài này dc chứ

AH
Akai Haruma
Giáo viên
19 tháng 10 2018

\(B=\frac{x^2+10x+20}{x^2+6x+9}=\frac{(x^2+6x+9)+4(x+3)-1}{x^2+6x+9}\)

\(=1+\frac{4(x+3)}{x^2+6x+9}-\frac{1}{x^2+6x+9}=1+\frac{4(x+3)}{(x+3)^2}-\frac{1}{(x+3)^2}\)

\(=1+\frac{4}{(x+3)}-\frac{1}{(x+3)^2}\)

Đặt \(\frac{1}{x+3}=a\Rightarrow B=1+4a-a^2=5-(a^2-4a+4)\)

\(=5-(a-2)^2\leq 5\)

Vậy \(B_{\max}=5\Leftrightarrow a=2\Leftrightarrow x=-\frac{5}{2}\)

AH
Akai Haruma
Giáo viên
19 tháng 10 2018

\(C=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}\)

Có: \(3x^2+9x+7=3(x^2+3x+\frac{9}{4})+\frac{1}{4}=3(x+\frac{3}{2})^2+\frac{1}{4}\geq \frac{1}{4}\)

\(\Rightarrow \frac{10}{3x^2+9x+7}\leq \frac{10}{\frac{1}{4}}=40\)

\(\Rightarrow C\leq 41\)

Vậy \(C_{\max}=41\Leftrightarrow x=\frac{-3}{2}\)