Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=3\left(x^2-\dfrac{2}{3}x+\dfrac{4}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{11}{9}\right)\)
\(=3\left(x-\dfrac{1}{3}\right)^2+\dfrac{11}{3}>=\dfrac{11}{3}\)
Dấu '=' xảy ra khi x=1/3
b: \(=2\left(x^2+\dfrac{3}{2}x\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}\right)\)
\(=2\left(x+\dfrac{3}{4}\right)^2-\dfrac{9}{8}>=-\dfrac{9}{8}\)
Dấu '=' xảy ra khi x=-3/4
d: \(=3\left(x^2-2x+\dfrac{2}{3}\right)\)
\(=3\left(x^2-2x+1-\dfrac{1}{3}\right)\)
\(=3\left(x-1\right)^2-1>=-1\)
Dấu '=' xảy ra khi x=1
a) Ta có: \(\left(9x^2y^3-12x^4y^4\right):3x^2y-\left(2-3x^2y\right)\cdot y^2\)
\(=3y^2-4x^2y^3-2y^2+3x^2y^3\)
\(=y^2-x^2y^3\)
b) Ta có: \(\left[5\left(x+2y^2\right)\left(x-2y^2\right)-\left(5x-4y^2\right)\left(x+12.5y^2\right)\right]:\left(-0.3x\right)\)
\(=\left[5\left(x^2-4y^4\right)-\left(5x^2+62.5xy^2-4xy^2-50y^4\right)\right]:\left(-0.3x\right)\)
\(=\left(5x^2-20y^4-5x^2-58.5xy^2+50y^4\right):\left(-0.3x\right)\)
\(=\left(30y^4-58.5xy^2\right):\left(-0.3x\right)\)
\(=\frac{-0.3\cdot\left(-100y^4+195xy^2\right)}{-0.3x}=\frac{-100y^4+195xy^2}{x}\)
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
a)x2-4x+5+y2+2y=x2-4x+4+y2+2y+1=(x-2)2+(y+1)2
b)2x2+y2-2xy+10x+25=x2-2xy+y2+x2+10x+25=(X+Y)2+(X+5)2
c)a2+2ab+5b2+4b+1=a2+2ab+b2+4b2+4b+1=(a+b)2+(2b+1)2
d)2x2+2b2+4x+4b+4=2x2+4x+2+2b2+4b+2=(\(\sqrt{2}x+\sqrt{2}\))2+(\(\sqrt{2}b+\sqrt{2}\))2
e)X4+13-6x2+4y+y2=x4-6x2+9+y2+4y+4=(x2-3)2+(y+2)2
f)-6x+9x2-8y+4y+y2+5= 9x2-6x+1+4y2-8y+4= (3x-1)2+(2y-2)2
\(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)
\(=9x^4-6x^2y^2-9x^4+4y^4\)
\(=-6x^2y^2+4y^4\)
Cảm ơn bạn nhiều nha