Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1+2+2^2+....+2^{99}+2^{100}\)
\(2A=2+2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(2A-A=\left(2+2^2+2^3+2^4+....+2^{100}+2^{101}\right)\) \(-\left(1+2+2^2+2^3+...+2^{99}+2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
Ủng hộ mk nha!!!
Tổng A có 100 số hạng .
Nhóm 2 số hạng vào 1 nhóm thì vừa hết . Ta có :
A = (2 + 2^2) + (2^3 + 2^4) + .....+ (2^99 + 2^100)
A = (2 + 2^2) + 2^2(2 + 2^2) + ......2^98(2 + 2^2)
A = 6 + 2^2 . 6 + .....+ 2^98 . 6
A = 6(1 + 2^2 + ....+ 2^98)
Đặt 12 + 22 + 32 + ..... + 102 = 385
=> 22(12 + 22 + 32 + ..... + 102) = 385.22
=> 22 + 42 + 62 + ...... + 202 = 385.4
=> 22 + 42 + 62 + ...... + 202 = 1540
Dat T=12+22+...+102=385
T.22=12.22+22.22+...102+22=385.22
T.22=(1.2)2+(2.2)2+...+(10.2)2=385.22
T.22=(2)2+(4)2+...+(20)2=385.22
T.22=S=385.22
=>S=385.4=1540
**** NHE
https://olm.vn/hoi-dap/detail/12866067135.html?pos=10220493034
b/ Ta có :
\(M=\frac{3^2}{2.5}+\frac{3^2}{5.8}+....+\frac{3^2}{98.101}\)
\(=3\left(\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{98.101}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{98}-\frac{1}{101}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=3.\frac{99}{202}\)
\(=\frac{297}{202}\)
Vậy....
\(S=3+3^2+3^3+....+3^{100}\)
\(3S=3^2+3^3+3^4+...+3^{101}\)
\(3S-S=3^2+3^3+3^4+...+3^{101}-3-3^2-3^3-....-3^{100}\)
\(2S=3^{101}-3\)
\(S=\frac{3^{101}-3}{2}\)
Mà \(P=3^{101}\)
=> S < P
Mình sửa lại đề là P = 3101 nhé, chứ ko để 2101 thì ko làm được
Ban ghi lai ro de dc k a
tính tổng:
S=(1+2.5+3.5...+101+201)+(12+22+32+...1002)